Cargando…

Gaussian and Lerch Models for Unimodal Time Series Forcasting

We consider unimodal time series forecasting. We propose Gaussian and Lerch models for this forecasting problem. The Gaussian model depends on three parameters and the Lerch model depends on four parameters. We estimate the unknown parameters by minimizing the sum of the absolute values of the resid...

Descripción completa

Detalles Bibliográficos
Autores principales: Dermoune, Azzouz, Ounaissi, Daoud, Slaoui, Yousri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606826/
https://www.ncbi.nlm.nih.gov/pubmed/37895595
http://dx.doi.org/10.3390/e25101474
Descripción
Sumario:We consider unimodal time series forecasting. We propose Gaussian and Lerch models for this forecasting problem. The Gaussian model depends on three parameters and the Lerch model depends on four parameters. We estimate the unknown parameters by minimizing the sum of the absolute values of the residuals. We solve these minimizations with and without a weighted median and we compare both approaches. As a numerical application, we consider the daily infections of COVID-19 in China using the Gaussian and Lerch models. We derive a confident interval for the daily infections from each local minima.