Cargando…
Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers
Ovarian cancers encompass a group of neoplasms originating from germinal tissues and exhibiting distinct clinical, pathological, and molecular features. Among these, epithelial ovarian cancers (EOCs) are the most prevalent, comprising five distinct tumor histotypes. Notably, high-grade serous ovaria...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606847/ https://www.ncbi.nlm.nih.gov/pubmed/37894756 http://dx.doi.org/10.3390/ijms242015077 |
_version_ | 1785127412747468800 |
---|---|
author | Azzalini, Eros Stanta, Giorgio Canzonieri, Vincenzo Bonin, Serena |
author_facet | Azzalini, Eros Stanta, Giorgio Canzonieri, Vincenzo Bonin, Serena |
author_sort | Azzalini, Eros |
collection | PubMed |
description | Ovarian cancers encompass a group of neoplasms originating from germinal tissues and exhibiting distinct clinical, pathological, and molecular features. Among these, epithelial ovarian cancers (EOCs) are the most prevalent, comprising five distinct tumor histotypes. Notably, high-grade serous ovarian cancers (HGSOCs) represent the majority, accounting for over 70% of EOC cases. Due to their silent and asymptomatic behavior, HGSOCs are generally diagnosed in advanced stages with an evolved and complex genomic state, characterized by high intratumor heterogeneity (ITH) due to chromosomal instability that distinguishes HGSOCs. Histologically, these cancers exhibit significant morphological diversity both within and between tumors. The histologic patterns associated with solid, endometrioid, and transitional (SET) and classic subtypes of HGSOCs offer prognostic insights and may indicate specific molecular profiles. The evolution of HGSOC from primary to metastasis is typically characterized by clonal ITH, involving shared or divergent mutations in neoplastic sub-clones within primary and metastatic sites. Disease progression and therapy resistance are also influenced by non-clonal ITH, related to interactions with the tumor microenvironment and further genomic changes. Notably, significant alterations occur in nonmalignant cells, including cancer-associated fibroblast and immune cells, during tumor progression. This review provides an overview of the complex nature of HGSOC, encompassing its various aspects of intratumor heterogeneity, histological patterns, and its dynamic evolution during progression and therapy resistance. |
format | Online Article Text |
id | pubmed-10606847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106068472023-10-28 Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers Azzalini, Eros Stanta, Giorgio Canzonieri, Vincenzo Bonin, Serena Int J Mol Sci Review Ovarian cancers encompass a group of neoplasms originating from germinal tissues and exhibiting distinct clinical, pathological, and molecular features. Among these, epithelial ovarian cancers (EOCs) are the most prevalent, comprising five distinct tumor histotypes. Notably, high-grade serous ovarian cancers (HGSOCs) represent the majority, accounting for over 70% of EOC cases. Due to their silent and asymptomatic behavior, HGSOCs are generally diagnosed in advanced stages with an evolved and complex genomic state, characterized by high intratumor heterogeneity (ITH) due to chromosomal instability that distinguishes HGSOCs. Histologically, these cancers exhibit significant morphological diversity both within and between tumors. The histologic patterns associated with solid, endometrioid, and transitional (SET) and classic subtypes of HGSOCs offer prognostic insights and may indicate specific molecular profiles. The evolution of HGSOC from primary to metastasis is typically characterized by clonal ITH, involving shared or divergent mutations in neoplastic sub-clones within primary and metastatic sites. Disease progression and therapy resistance are also influenced by non-clonal ITH, related to interactions with the tumor microenvironment and further genomic changes. Notably, significant alterations occur in nonmalignant cells, including cancer-associated fibroblast and immune cells, during tumor progression. This review provides an overview of the complex nature of HGSOC, encompassing its various aspects of intratumor heterogeneity, histological patterns, and its dynamic evolution during progression and therapy resistance. MDPI 2023-10-11 /pmc/articles/PMC10606847/ /pubmed/37894756 http://dx.doi.org/10.3390/ijms242015077 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Azzalini, Eros Stanta, Giorgio Canzonieri, Vincenzo Bonin, Serena Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers |
title | Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers |
title_full | Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers |
title_fullStr | Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers |
title_full_unstemmed | Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers |
title_short | Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers |
title_sort | overview of tumor heterogeneity in high-grade serous ovarian cancers |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606847/ https://www.ncbi.nlm.nih.gov/pubmed/37894756 http://dx.doi.org/10.3390/ijms242015077 |
work_keys_str_mv | AT azzalinieros overviewoftumorheterogeneityinhighgradeserousovariancancers AT stantagiorgio overviewoftumorheterogeneityinhighgradeserousovariancancers AT canzonierivincenzo overviewoftumorheterogeneityinhighgradeserousovariancancers AT boninserena overviewoftumorheterogeneityinhighgradeserousovariancancers |