Cargando…
Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
Circular data are extremely important in many different contexts of natural and social science, from forestry to sociology, among many others. Since the usual inference procedures based on the maximum likelihood principle are known to be extremely non-robust in the presence of possible data contamin...
Autores principales: | Castilla, Elena, Ghosh, Abhik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606857/ https://www.ncbi.nlm.nih.gov/pubmed/37895543 http://dx.doi.org/10.3390/e25101422 |
Ejemplares similares
-
Minimum sample size for developing a multivariable prediction model using multinomial logistic regression
por: Pate, Alexander, et al.
Publicado: (2023) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Validation and updating of risk models based on multinomial logistic regression
por: Van Calster, Ben, et al.
Publicado: (2017) -
Classification of COVID19 Patients Using Robust Logistic Regression
por: Ghosh, Abhik, et al.
Publicado: (2022) -
Evaluation of multinomial logistic regression models for predicting causative
pathogens of food poisoning cases
por: INOUE, Hideya, et al.
Publicado: (2018)