Cargando…
Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions
Symmetric extensions are essential in quantum mechanics, providing a lens through which to investigate the correlations of entangled quantum systems and to address challenges like the quantum marginal problem. Though semi-definite programming (SDP) is a recognized method for handling symmetric exten...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606868/ https://www.ncbi.nlm.nih.gov/pubmed/37895546 http://dx.doi.org/10.3390/e25101425 |
_version_ | 1785127418058506240 |
---|---|
author | Li, Youning Zhang, Chao Hou, Shi-Yao Wu, Zipeng Zhu, Xuanran Zeng, Bei |
author_facet | Li, Youning Zhang, Chao Hou, Shi-Yao Wu, Zipeng Zhu, Xuanran Zeng, Bei |
author_sort | Li, Youning |
collection | PubMed |
description | Symmetric extensions are essential in quantum mechanics, providing a lens through which to investigate the correlations of entangled quantum systems and to address challenges like the quantum marginal problem. Though semi-definite programming (SDP) is a recognized method for handling symmetric extensions, it struggles with computational constraints, especially due to the large real parameters in generalized qudit systems. In this study, we introduce an approach that adeptly leverages permutation symmetry. By fine-tuning the SDP problem for detecting k-symmetric extensions, our method markedly diminishes the searching space dimensionality and trims the number of parameters essential for positive-definiteness tests. This leads to an algorithmic enhancement, reducing the complexity from [Formula: see text] to [Formula: see text] in the qudit k-symmetric extension scenario. Additionally, our approach streamlines the process of verifying the positive definiteness of the results. These advancements pave the way for deeper insights into quantum correlations, highlighting potential avenues for refined research and innovations in quantum information theory. |
format | Online Article Text |
id | pubmed-10606868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106068682023-10-28 Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions Li, Youning Zhang, Chao Hou, Shi-Yao Wu, Zipeng Zhu, Xuanran Zeng, Bei Entropy (Basel) Article Symmetric extensions are essential in quantum mechanics, providing a lens through which to investigate the correlations of entangled quantum systems and to address challenges like the quantum marginal problem. Though semi-definite programming (SDP) is a recognized method for handling symmetric extensions, it struggles with computational constraints, especially due to the large real parameters in generalized qudit systems. In this study, we introduce an approach that adeptly leverages permutation symmetry. By fine-tuning the SDP problem for detecting k-symmetric extensions, our method markedly diminishes the searching space dimensionality and trims the number of parameters essential for positive-definiteness tests. This leads to an algorithmic enhancement, reducing the complexity from [Formula: see text] to [Formula: see text] in the qudit k-symmetric extension scenario. Additionally, our approach streamlines the process of verifying the positive definiteness of the results. These advancements pave the way for deeper insights into quantum correlations, highlighting potential avenues for refined research and innovations in quantum information theory. MDPI 2023-10-08 /pmc/articles/PMC10606868/ /pubmed/37895546 http://dx.doi.org/10.3390/e25101425 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Youning Zhang, Chao Hou, Shi-Yao Wu, Zipeng Zhu, Xuanran Zeng, Bei Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions |
title | Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions |
title_full | Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions |
title_fullStr | Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions |
title_full_unstemmed | Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions |
title_short | Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions |
title_sort | tapping into permutation symmetry for improved detection of k-symmetric extensions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606868/ https://www.ncbi.nlm.nih.gov/pubmed/37895546 http://dx.doi.org/10.3390/e25101425 |
work_keys_str_mv | AT liyouning tappingintopermutationsymmetryforimproveddetectionofksymmetricextensions AT zhangchao tappingintopermutationsymmetryforimproveddetectionofksymmetricextensions AT houshiyao tappingintopermutationsymmetryforimproveddetectionofksymmetricextensions AT wuzipeng tappingintopermutationsymmetryforimproveddetectionofksymmetricextensions AT zhuxuanran tappingintopermutationsymmetryforimproveddetectionofksymmetricextensions AT zengbei tappingintopermutationsymmetryforimproveddetectionofksymmetricextensions |