Cargando…
Alpha-Synuclein-Specific Regulatory T Cells Ameliorate Parkinson’s Disease Progression in Mice
Parkinson’s disease (PD) is a long-term neurodegenerative disease characterized by dopaminergic neuronal loss and the aggregation of alpha-synuclein (α-syn) in the brain. Cell therapy using regulatory T cells (Tregs) has therapeutic potential on PD progression in a mouse model; however, several chal...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607030/ https://www.ncbi.nlm.nih.gov/pubmed/37894917 http://dx.doi.org/10.3390/ijms242015237 |
Sumario: | Parkinson’s disease (PD) is a long-term neurodegenerative disease characterized by dopaminergic neuronal loss and the aggregation of alpha-synuclein (α-syn) in the brain. Cell therapy using regulatory T cells (Tregs) has therapeutic potential on PD progression in a mouse model; however, several challenges were associated with its applications. Here, we propose a strategy for α-syn specific Treg expansion (α-syn Treg). We presented α-syn to T cells via dendritic cells. This method increased the mobility of Tregs towards the site of abundant α-syn in vitro (p < 0.01; α-syn Tregs versus polyclonal Tregs (poly Tregs)) and in vivo. Consequently, α-syn Tregs showed noteworthy neuroprotective effects against motor function deficits (p < 0.05, p < 0.01; α-syn Tregs versus poly Tregs), dopaminergic neuronal loss (p < 0.001; α-syn Tregs versus poly Tregs), and α-syn accumulation (p < 0.05; α-syn Tregs versus poly Tregs) in MPTP-induced PD mice. Furthermore, the adoptive transfer of α-syn Tregs exerted immunosuppressive effects on activated microglia, especially pro-inflammatory microglia, in PD mice. Our findings suggest that α-syn presentation may provide a significant improvement in neuroprotective activities of Tregs and suggest the effective clinical application of Treg therapy in PD. |
---|