Cargando…
ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information
Anticancer peptides (ACPs) have been proven to possess potent anticancer activities. Although computational methods have emerged for rapid ACPs identification, their accuracy still needs improvement. In this study, we propose a model called ACP-BC, a three-channel end-to-end model that utilizes vari...
Autores principales: | Sun, Mingwei, Hu, Haoyuan, Pang, Wei, Zhou, You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607064/ https://www.ncbi.nlm.nih.gov/pubmed/37895128 http://dx.doi.org/10.3390/ijms242015447 |
Ejemplares similares
-
ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation
por: Yi, Hai-Cheng, et al.
Publicado: (2019) -
ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides
por: Ahmed, Sajid, et al.
Publicado: (2021) -
DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm
por: Yu, Lezheng, et al.
Publicado: (2020) -
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020) -
iACP: a sequence-based tool for identifying anticancer peptides
por: Chen, Wei, et al.
Publicado: (2016)