Cargando…

Effect of Mowing on Wheat Growth at Seeding Stage

Winter wheat is used as forage at the tillering stage in many countries; however, the regrowth pattern of wheat after mowing remains unclear. In this study, the growth patterns of wheat were revealed through cytological and physiological assessments as well as transcriptome sequencing. The results o...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Song, Wang, Shaoyu, Ye, Wenjie, Yao, Yaxin, Sun, Fengli, Zhang, Chao, Liu, Shudong, Xi, Yajun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607078/
https://www.ncbi.nlm.nih.gov/pubmed/37895031
http://dx.doi.org/10.3390/ijms242015353
Descripción
Sumario:Winter wheat is used as forage at the tillering stage in many countries; however, the regrowth pattern of wheat after mowing remains unclear. In this study, the growth patterns of wheat were revealed through cytological and physiological assessments as well as transcriptome sequencing. The results of agronomic traits and paraffin sections showed that the shoot growth rate increased, but root growth was inhibited after mowing. The submicroscopic structure revealed a decrease in heterochromatin in the tillering node cell and a change in mitochondrial shape in the tillering node and secondary root. Analysis of the transcriptome showed the number of differentially expressed genes (DEGs) involved in biological processes, cellular components, and molecular functions; 2492 upregulated DEGs and 1534 downregulated DEGs were identified. The results of the experimental study showed that mowing induced expression of DEGs in the phenylpropanoid biosynthesis pathway and increased the activity of PAL and 4CL. The upregulated DEGs in the starch and sucrose metabolism pathways and related enzyme activity alterations indicated that the sugar degradation rate increased. The DEGs in the nitrogen metabolism pathway biosynthesis of the amino acids, phenylpropanoid biosynthesis metabolism, and in the TCA pathway also changed after mowing. Hormone content and related gene expression was also altered in the tillering and secondary roots after mowing. When jasmonic acid and ethylene were used to treat the wheat after mowing, the regeneration rate increased, whereas abscisic acid inhibited regrowth. This study revealed the wheat growth patterns after mowing, which could lead to a better understanding of the development of dual-purpose wheat.