Cargando…
Threshold-Based BRISQUE-Assisted Deep Learning for Enhancing Crack Detection in Concrete Structures
Automated visual inspection has made significant advancements in the detection of cracks on the surfaces of concrete structures. However, low-quality images significantly affect the classification performance of convolutional neural networks (CNNs). Therefore, it is essential to evaluate the suitabi...
Autores principales: | Pennada, Sanjeetha, Perry, Marcus, McAlorum, Jack, Dow, Hamish, Dobie, Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607118/ https://www.ncbi.nlm.nih.gov/pubmed/37888325 http://dx.doi.org/10.3390/jimaging9100218 |
Ejemplares similares
-
Wireless Concrete Strength Monitoring of Wind Turbine Foundations
por: Perry, Marcus, et al.
Publicado: (2017) -
Crack Monitoring of Operational Wind Turbine Foundations
por: Perry, Marcus, et al.
Publicado: (2017) -
ConcrEITS: An Electrical Impedance Interrogator for Concrete Damage Detection Using Self-Sensing Repairs
por: McAlorum, Jack, et al.
Publicado: (2021) -
Ambient Cured Fly Ash Geopolymer Coatings for Concrete
por: Biondi, L., et al.
Publicado: (2019) -
An automated method for BRISQUE quantification of image quality in echocardiography
por: Jayaneththi, N, et al.
Publicado: (2022)