Cargando…
Multiple Roles of the Low-Affinity Calcium Uptake System in Drechslerella dactyloides, a Nematode-Trapping Fungus That Forms Constricting Rings
(1) Background: the low-affinity calcium uptake system (LACS) has been shown to play a crucial role in the conidiation and formation of adhesive nets and knobs by nematode-trapping fungi (NTF), but its involvement in the formation of constricting rings (CRs), mechanical traps to capture free-living...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607529/ https://www.ncbi.nlm.nih.gov/pubmed/37888231 http://dx.doi.org/10.3390/jof9100975 |
Sumario: | (1) Background: the low-affinity calcium uptake system (LACS) has been shown to play a crucial role in the conidiation and formation of adhesive nets and knobs by nematode-trapping fungi (NTF), but its involvement in the formation of constricting rings (CRs), mechanical traps to capture free-living nematodes, remains unexplored. (2) Methods: we investigated the function of two LACS genes (DdaFIG_1 and DdaFIG_2) in Drechslerella dactyloides, an NTF that forms CRs. We generated single (DdaFIG_1Ri and DdaFIG_2Ri) and double (DdaFIG_1,2Ri) knockdown mutants via the use of RNA interference (RNAi). (3) Results: suppression of these genes significantly affected conidiation, trap formation, vegetative growth, and response to diverse abiotic stresses. The number of CRs formed by DdaFIG_1Ri, DdaFIG_2Ri, and DdaFIG_1,2Ri decreased to 58.5%, 59.1%, and 38.9% of the wild-type (WT) level, respectively. The ring cell inflation rate also decreased to 73.6%, 60.6%, and 48.8% of the WT level, respectively. (4) Conclusions: the LACS plays multiple critical roles in diverse NTF. |
---|