Cargando…
Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important su...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607637/ https://www.ncbi.nlm.nih.gov/pubmed/37888320 http://dx.doi.org/10.3390/jimaging9100213 |
_version_ | 1785127588815962112 |
---|---|
author | Scavuzzo, Anna Pasini, Giovanni Crescio, Elisabetta Jimenez-Rios, Miguel Angel Figueroa-Rodriguez, Pavel Comelli, Albert Russo, Giorgio Vazquez, Ivan Calvo Araiza, Sebastian Muruato Ortiz, David Gomez Perez Montiel, Delia Lopez Saavedra, Alejandro Stefano, Alessandro |
author_facet | Scavuzzo, Anna Pasini, Giovanni Crescio, Elisabetta Jimenez-Rios, Miguel Angel Figueroa-Rodriguez, Pavel Comelli, Albert Russo, Giorgio Vazquez, Ivan Calvo Araiza, Sebastian Muruato Ortiz, David Gomez Perez Montiel, Delia Lopez Saavedra, Alejandro Stefano, Alessandro |
author_sort | Scavuzzo, Anna |
collection | PubMed |
description | Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important survivorship concern. Aim: To explore this possibility, we conducted a study investigating the role of computed tomography (CT) radiomics models that integrate clinical predictors, enabling personalized prediction of histopathology in metastatic non-seminomatous TGCT patients prior to PC-RPLND. In this retrospective study, we included a cohort of 122 patients. Methods: Using dedicated radiomics software, we segmented the targets and extracted quantitative features from the CT images. Subsequently, we employed feature selection techniques and developed radiomics-based machine learning models to predict histological subtypes. To ensure the robustness of our procedure, we implemented a 5-fold cross-validation approach. When evaluating the models’ performance, we measured metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F-score. Result: Our radiomics model based on the Support Vector Machine achieved an optimal average AUC of 0.945. Conclusions: The presented CT-based radiomics model can potentially serve as a non-invasive tool to predict histopathological outcomes, differentiating among fibrosis/necrosis, teratoma, and viable tumor in metastatic non-seminomatous TGCT before PC-RPLND. It has the potential to be considered a promising tool to mitigate the risk of over- or under-treatment in young patients, although multi-center validation is critical to confirm the clinical utility of the proposed radiomics workflow. |
format | Online Article Text |
id | pubmed-10607637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106076372023-10-28 Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection Scavuzzo, Anna Pasini, Giovanni Crescio, Elisabetta Jimenez-Rios, Miguel Angel Figueroa-Rodriguez, Pavel Comelli, Albert Russo, Giorgio Vazquez, Ivan Calvo Araiza, Sebastian Muruato Ortiz, David Gomez Perez Montiel, Delia Lopez Saavedra, Alejandro Stefano, Alessandro J Imaging Article Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important survivorship concern. Aim: To explore this possibility, we conducted a study investigating the role of computed tomography (CT) radiomics models that integrate clinical predictors, enabling personalized prediction of histopathology in metastatic non-seminomatous TGCT patients prior to PC-RPLND. In this retrospective study, we included a cohort of 122 patients. Methods: Using dedicated radiomics software, we segmented the targets and extracted quantitative features from the CT images. Subsequently, we employed feature selection techniques and developed radiomics-based machine learning models to predict histological subtypes. To ensure the robustness of our procedure, we implemented a 5-fold cross-validation approach. When evaluating the models’ performance, we measured metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F-score. Result: Our radiomics model based on the Support Vector Machine achieved an optimal average AUC of 0.945. Conclusions: The presented CT-based radiomics model can potentially serve as a non-invasive tool to predict histopathological outcomes, differentiating among fibrosis/necrosis, teratoma, and viable tumor in metastatic non-seminomatous TGCT before PC-RPLND. It has the potential to be considered a promising tool to mitigate the risk of over- or under-treatment in young patients, although multi-center validation is critical to confirm the clinical utility of the proposed radiomics workflow. MDPI 2023-10-07 /pmc/articles/PMC10607637/ /pubmed/37888320 http://dx.doi.org/10.3390/jimaging9100213 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Scavuzzo, Anna Pasini, Giovanni Crescio, Elisabetta Jimenez-Rios, Miguel Angel Figueroa-Rodriguez, Pavel Comelli, Albert Russo, Giorgio Vazquez, Ivan Calvo Araiza, Sebastian Muruato Ortiz, David Gomez Perez Montiel, Delia Lopez Saavedra, Alejandro Stefano, Alessandro Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection |
title | Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection |
title_full | Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection |
title_fullStr | Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection |
title_full_unstemmed | Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection |
title_short | Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection |
title_sort | radiomics analyses to predict histopathology in patients with metastatic testicular germ cell tumors before post-chemotherapy retroperitoneal lymph node dissection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607637/ https://www.ncbi.nlm.nih.gov/pubmed/37888320 http://dx.doi.org/10.3390/jimaging9100213 |
work_keys_str_mv | AT scavuzzoanna radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT pasinigiovanni radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT crescioelisabetta radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT jimenezriosmiguelangel radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT figueroarodriguezpavel radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT comellialbert radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT russogiorgio radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT vazquezivancalvo radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT araizasebastianmuruato radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT ortizdavidgomez radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT perezmontieldelia radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT lopezsaavedraalejandro radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection AT stefanoalessandro radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection |