Cargando…

Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection

Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important su...

Descripción completa

Detalles Bibliográficos
Autores principales: Scavuzzo, Anna, Pasini, Giovanni, Crescio, Elisabetta, Jimenez-Rios, Miguel Angel, Figueroa-Rodriguez, Pavel, Comelli, Albert, Russo, Giorgio, Vazquez, Ivan Calvo, Araiza, Sebastian Muruato, Ortiz, David Gomez, Perez Montiel, Delia, Lopez Saavedra, Alejandro, Stefano, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607637/
https://www.ncbi.nlm.nih.gov/pubmed/37888320
http://dx.doi.org/10.3390/jimaging9100213
_version_ 1785127588815962112
author Scavuzzo, Anna
Pasini, Giovanni
Crescio, Elisabetta
Jimenez-Rios, Miguel Angel
Figueroa-Rodriguez, Pavel
Comelli, Albert
Russo, Giorgio
Vazquez, Ivan Calvo
Araiza, Sebastian Muruato
Ortiz, David Gomez
Perez Montiel, Delia
Lopez Saavedra, Alejandro
Stefano, Alessandro
author_facet Scavuzzo, Anna
Pasini, Giovanni
Crescio, Elisabetta
Jimenez-Rios, Miguel Angel
Figueroa-Rodriguez, Pavel
Comelli, Albert
Russo, Giorgio
Vazquez, Ivan Calvo
Araiza, Sebastian Muruato
Ortiz, David Gomez
Perez Montiel, Delia
Lopez Saavedra, Alejandro
Stefano, Alessandro
author_sort Scavuzzo, Anna
collection PubMed
description Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important survivorship concern. Aim: To explore this possibility, we conducted a study investigating the role of computed tomography (CT) radiomics models that integrate clinical predictors, enabling personalized prediction of histopathology in metastatic non-seminomatous TGCT patients prior to PC-RPLND. In this retrospective study, we included a cohort of 122 patients. Methods: Using dedicated radiomics software, we segmented the targets and extracted quantitative features from the CT images. Subsequently, we employed feature selection techniques and developed radiomics-based machine learning models to predict histological subtypes. To ensure the robustness of our procedure, we implemented a 5-fold cross-validation approach. When evaluating the models’ performance, we measured metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F-score. Result: Our radiomics model based on the Support Vector Machine achieved an optimal average AUC of 0.945. Conclusions: The presented CT-based radiomics model can potentially serve as a non-invasive tool to predict histopathological outcomes, differentiating among fibrosis/necrosis, teratoma, and viable tumor in metastatic non-seminomatous TGCT before PC-RPLND. It has the potential to be considered a promising tool to mitigate the risk of over- or under-treatment in young patients, although multi-center validation is critical to confirm the clinical utility of the proposed radiomics workflow.
format Online
Article
Text
id pubmed-10607637
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106076372023-10-28 Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection Scavuzzo, Anna Pasini, Giovanni Crescio, Elisabetta Jimenez-Rios, Miguel Angel Figueroa-Rodriguez, Pavel Comelli, Albert Russo, Giorgio Vazquez, Ivan Calvo Araiza, Sebastian Muruato Ortiz, David Gomez Perez Montiel, Delia Lopez Saavedra, Alejandro Stefano, Alessandro J Imaging Article Background: The identification of histopathology in metastatic non-seminomatous testicular germ cell tumors (TGCT) before post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) holds significant potential to reduce treatment-related morbidity in young patients, addressing an important survivorship concern. Aim: To explore this possibility, we conducted a study investigating the role of computed tomography (CT) radiomics models that integrate clinical predictors, enabling personalized prediction of histopathology in metastatic non-seminomatous TGCT patients prior to PC-RPLND. In this retrospective study, we included a cohort of 122 patients. Methods: Using dedicated radiomics software, we segmented the targets and extracted quantitative features from the CT images. Subsequently, we employed feature selection techniques and developed radiomics-based machine learning models to predict histological subtypes. To ensure the robustness of our procedure, we implemented a 5-fold cross-validation approach. When evaluating the models’ performance, we measured metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F-score. Result: Our radiomics model based on the Support Vector Machine achieved an optimal average AUC of 0.945. Conclusions: The presented CT-based radiomics model can potentially serve as a non-invasive tool to predict histopathological outcomes, differentiating among fibrosis/necrosis, teratoma, and viable tumor in metastatic non-seminomatous TGCT before PC-RPLND. It has the potential to be considered a promising tool to mitigate the risk of over- or under-treatment in young patients, although multi-center validation is critical to confirm the clinical utility of the proposed radiomics workflow. MDPI 2023-10-07 /pmc/articles/PMC10607637/ /pubmed/37888320 http://dx.doi.org/10.3390/jimaging9100213 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Scavuzzo, Anna
Pasini, Giovanni
Crescio, Elisabetta
Jimenez-Rios, Miguel Angel
Figueroa-Rodriguez, Pavel
Comelli, Albert
Russo, Giorgio
Vazquez, Ivan Calvo
Araiza, Sebastian Muruato
Ortiz, David Gomez
Perez Montiel, Delia
Lopez Saavedra, Alejandro
Stefano, Alessandro
Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
title Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
title_full Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
title_fullStr Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
title_full_unstemmed Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
title_short Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
title_sort radiomics analyses to predict histopathology in patients with metastatic testicular germ cell tumors before post-chemotherapy retroperitoneal lymph node dissection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607637/
https://www.ncbi.nlm.nih.gov/pubmed/37888320
http://dx.doi.org/10.3390/jimaging9100213
work_keys_str_mv AT scavuzzoanna radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT pasinigiovanni radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT crescioelisabetta radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT jimenezriosmiguelangel radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT figueroarodriguezpavel radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT comellialbert radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT russogiorgio radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT vazquezivancalvo radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT araizasebastianmuruato radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT ortizdavidgomez radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT perezmontieldelia radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT lopezsaavedraalejandro radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection
AT stefanoalessandro radiomicsanalysestopredicthistopathologyinpatientswithmetastatictesticulargermcelltumorsbeforepostchemotherapyretroperitoneallymphnodedissection