Cargando…
Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607795/ https://www.ncbi.nlm.nih.gov/pubmed/37895018 http://dx.doi.org/10.3390/ijms242015337 |
_version_ | 1785127627216912384 |
---|---|
author | Zheng, Jiachen Gong, Shaoying Han, Jianchun |
author_facet | Zheng, Jiachen Gong, Shaoying Han, Jianchun |
author_sort | Zheng, Jiachen |
collection | PubMed |
description | Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and 5 mg/mL) mitigated 100 μg/mL LPS-stimulated IEB dysfunction through increasing transepithelial electrical resistance (TEER), reducing fluorescein isothiocyanate (FITC)–dextran (4 kDa) flux, and up-regulating the protein and mRNA expression of tight junction (TJ) proteins (Claudin-1, Zonula occludens-1 (ZO-1) and Occludin). In addition, AG ameliorated LPS-stimulated IEB dysfunction by reducing interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β levels, decreasing the reactive oxygen species (ROS) level, increasing superoxide dismutase (SOD) activity, increasing the glutathione (GSH) level, and decreasing the levels of malondialdehyde (MDA) and intracellular calcium ([Ca(2+)](i)). Furthermore, 2 mg/mL AG up-regulated the expression of silent information regulator 1 (SIRT1), the phosphorylated adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB) and the inhibitor of NF-κBα (IκBα). Therefore, AG could maintain IEB integrity by activating AMPK/SIRT1 and inhibiting the NF-κB signaling pathway. In conclusion, AG can regulate the AMPK/SIRT1/NF-κB signaling pathway to reduce inflammation and oxidative stress, thus alleviating LPS-stimulated IEB damage. |
format | Online Article Text |
id | pubmed-10607795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106077952023-10-28 Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells Zheng, Jiachen Gong, Shaoying Han, Jianchun Int J Mol Sci Article Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and 5 mg/mL) mitigated 100 μg/mL LPS-stimulated IEB dysfunction through increasing transepithelial electrical resistance (TEER), reducing fluorescein isothiocyanate (FITC)–dextran (4 kDa) flux, and up-regulating the protein and mRNA expression of tight junction (TJ) proteins (Claudin-1, Zonula occludens-1 (ZO-1) and Occludin). In addition, AG ameliorated LPS-stimulated IEB dysfunction by reducing interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β levels, decreasing the reactive oxygen species (ROS) level, increasing superoxide dismutase (SOD) activity, increasing the glutathione (GSH) level, and decreasing the levels of malondialdehyde (MDA) and intracellular calcium ([Ca(2+)](i)). Furthermore, 2 mg/mL AG up-regulated the expression of silent information regulator 1 (SIRT1), the phosphorylated adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB) and the inhibitor of NF-κBα (IκBα). Therefore, AG could maintain IEB integrity by activating AMPK/SIRT1 and inhibiting the NF-κB signaling pathway. In conclusion, AG can regulate the AMPK/SIRT1/NF-κB signaling pathway to reduce inflammation and oxidative stress, thus alleviating LPS-stimulated IEB damage. MDPI 2023-10-19 /pmc/articles/PMC10607795/ /pubmed/37895018 http://dx.doi.org/10.3390/ijms242015337 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zheng, Jiachen Gong, Shaoying Han, Jianchun Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells |
title | Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells |
title_full | Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells |
title_fullStr | Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells |
title_full_unstemmed | Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells |
title_short | Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells |
title_sort | arabinogalactan alleviates lipopolysaccharide-induced intestinal epithelial barrier damage through adenosine monophosphate-activated protein kinase/silent information regulator 1/nuclear factor kappa-b signaling pathways in caco-2 cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607795/ https://www.ncbi.nlm.nih.gov/pubmed/37895018 http://dx.doi.org/10.3390/ijms242015337 |
work_keys_str_mv | AT zhengjiachen arabinogalactanalleviateslipopolysaccharideinducedintestinalepithelialbarrierdamagethroughadenosinemonophosphateactivatedproteinkinasesilentinformationregulator1nuclearfactorkappabsignalingpathwaysincaco2cells AT gongshaoying arabinogalactanalleviateslipopolysaccharideinducedintestinalepithelialbarrierdamagethroughadenosinemonophosphateactivatedproteinkinasesilentinformationregulator1nuclearfactorkappabsignalingpathwaysincaco2cells AT hanjianchun arabinogalactanalleviateslipopolysaccharideinducedintestinalepithelialbarrierdamagethroughadenosinemonophosphateactivatedproteinkinasesilentinformationregulator1nuclearfactorkappabsignalingpathwaysincaco2cells |