Cargando…

Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells

Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jiachen, Gong, Shaoying, Han, Jianchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607795/
https://www.ncbi.nlm.nih.gov/pubmed/37895018
http://dx.doi.org/10.3390/ijms242015337
_version_ 1785127627216912384
author Zheng, Jiachen
Gong, Shaoying
Han, Jianchun
author_facet Zheng, Jiachen
Gong, Shaoying
Han, Jianchun
author_sort Zheng, Jiachen
collection PubMed
description Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and 5 mg/mL) mitigated 100 μg/mL LPS-stimulated IEB dysfunction through increasing transepithelial electrical resistance (TEER), reducing fluorescein isothiocyanate (FITC)–dextran (4 kDa) flux, and up-regulating the protein and mRNA expression of tight junction (TJ) proteins (Claudin-1, Zonula occludens-1 (ZO-1) and Occludin). In addition, AG ameliorated LPS-stimulated IEB dysfunction by reducing interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β levels, decreasing the reactive oxygen species (ROS) level, increasing superoxide dismutase (SOD) activity, increasing the glutathione (GSH) level, and decreasing the levels of malondialdehyde (MDA) and intracellular calcium ([Ca(2+)](i)). Furthermore, 2 mg/mL AG up-regulated the expression of silent information regulator 1 (SIRT1), the phosphorylated adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB) and the inhibitor of NF-κBα (IκBα). Therefore, AG could maintain IEB integrity by activating AMPK/SIRT1 and inhibiting the NF-κB signaling pathway. In conclusion, AG can regulate the AMPK/SIRT1/NF-κB signaling pathway to reduce inflammation and oxidative stress, thus alleviating LPS-stimulated IEB damage.
format Online
Article
Text
id pubmed-10607795
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106077952023-10-28 Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells Zheng, Jiachen Gong, Shaoying Han, Jianchun Int J Mol Sci Article Intestinal epithelial barrier (IEB) damage is an important aspect in inflammatory bowel disease (IBD). The objective of this study was to explore the protective effects and mechanisms of arabinogalactan (AG) on lipopolysaccharide (LPS)-stimulated IEB dysfunction. The results show that AG (1, 2, and 5 mg/mL) mitigated 100 μg/mL LPS-stimulated IEB dysfunction through increasing transepithelial electrical resistance (TEER), reducing fluorescein isothiocyanate (FITC)–dextran (4 kDa) flux, and up-regulating the protein and mRNA expression of tight junction (TJ) proteins (Claudin-1, Zonula occludens-1 (ZO-1) and Occludin). In addition, AG ameliorated LPS-stimulated IEB dysfunction by reducing interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β levels, decreasing the reactive oxygen species (ROS) level, increasing superoxide dismutase (SOD) activity, increasing the glutathione (GSH) level, and decreasing the levels of malondialdehyde (MDA) and intracellular calcium ([Ca(2+)](i)). Furthermore, 2 mg/mL AG up-regulated the expression of silent information regulator 1 (SIRT1), the phosphorylated adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB) and the inhibitor of NF-κBα (IκBα). Therefore, AG could maintain IEB integrity by activating AMPK/SIRT1 and inhibiting the NF-κB signaling pathway. In conclusion, AG can regulate the AMPK/SIRT1/NF-κB signaling pathway to reduce inflammation and oxidative stress, thus alleviating LPS-stimulated IEB damage. MDPI 2023-10-19 /pmc/articles/PMC10607795/ /pubmed/37895018 http://dx.doi.org/10.3390/ijms242015337 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zheng, Jiachen
Gong, Shaoying
Han, Jianchun
Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
title Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
title_full Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
title_fullStr Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
title_full_unstemmed Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
title_short Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells
title_sort arabinogalactan alleviates lipopolysaccharide-induced intestinal epithelial barrier damage through adenosine monophosphate-activated protein kinase/silent information regulator 1/nuclear factor kappa-b signaling pathways in caco-2 cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607795/
https://www.ncbi.nlm.nih.gov/pubmed/37895018
http://dx.doi.org/10.3390/ijms242015337
work_keys_str_mv AT zhengjiachen arabinogalactanalleviateslipopolysaccharideinducedintestinalepithelialbarrierdamagethroughadenosinemonophosphateactivatedproteinkinasesilentinformationregulator1nuclearfactorkappabsignalingpathwaysincaco2cells
AT gongshaoying arabinogalactanalleviateslipopolysaccharideinducedintestinalepithelialbarrierdamagethroughadenosinemonophosphateactivatedproteinkinasesilentinformationregulator1nuclearfactorkappabsignalingpathwaysincaco2cells
AT hanjianchun arabinogalactanalleviateslipopolysaccharideinducedintestinalepithelialbarrierdamagethroughadenosinemonophosphateactivatedproteinkinasesilentinformationregulator1nuclearfactorkappabsignalingpathwaysincaco2cells