Cargando…
Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review
In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (V(th)), and current on/off rati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607980/ https://www.ncbi.nlm.nih.gov/pubmed/37895626 http://dx.doi.org/10.3390/ma16206645 |
_version_ | 1785127670796779520 |
---|---|
author | Zhou, Yang Zhang, Keke Chen, Zhaoyang Zhang, Haichang |
author_facet | Zhou, Yang Zhang, Keke Chen, Zhaoyang Zhang, Haichang |
author_sort | Zhou, Yang |
collection | PubMed |
description | In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (V(th)), and current on/off ratio (I(on/off)). To enhance μ, numerous studies have concentrated on optimizing charge transport within the semiconductor layer. These efforts include: (i) extending π-conjugation, enhancing molecular planarity, and optimizing donor–acceptor structures to improve charge transport within individual molecules; and (ii) promoting strong aggregation, achieving well-ordered structures, and reducing molecular distances to enhance charge transport between molecules. In order to obtain a high charge transport mobility, the charge injection from the electrodes into the semiconductor layer is also important. Since a suitable frontier molecular orbitals’ level could align with the work function of the electrodes, in turn forming an Ohmic contact at the interface. OFETs are classified into p-type (hole transport), n-type (electron transport), and ambipolar-type (both hole and electron transport) based on their charge transport characteristics. As of now, the majority of reported conjugated materials are of the p-type semiconductor category, with research on n-type or ambipolar conjugated materials lagging significantly behind. This review introduces the molecular design concept for enhancing charge carrier mobility, addressing both within the semiconductor layer and charge injection aspects. Additionally, the process of designing or converting the semiconductor type is summarized. Lastly, this review discusses potential trends in evolution and challenges and provides an outlook; the ultimate objective is to outline a theoretical framework for designing high-performance organic semiconductors that can advance the development of OFET applications. |
format | Online Article Text |
id | pubmed-10607980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106079802023-10-28 Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review Zhou, Yang Zhang, Keke Chen, Zhaoyang Zhang, Haichang Materials (Basel) Review In the last two decades, organic field-effect transistors (OFETs) have garnered increasing attention from the scientific and industrial communities. The performance of OFETs can be evaluated based on three factors: the charge transport mobility (μ), threshold voltage (V(th)), and current on/off ratio (I(on/off)). To enhance μ, numerous studies have concentrated on optimizing charge transport within the semiconductor layer. These efforts include: (i) extending π-conjugation, enhancing molecular planarity, and optimizing donor–acceptor structures to improve charge transport within individual molecules; and (ii) promoting strong aggregation, achieving well-ordered structures, and reducing molecular distances to enhance charge transport between molecules. In order to obtain a high charge transport mobility, the charge injection from the electrodes into the semiconductor layer is also important. Since a suitable frontier molecular orbitals’ level could align with the work function of the electrodes, in turn forming an Ohmic contact at the interface. OFETs are classified into p-type (hole transport), n-type (electron transport), and ambipolar-type (both hole and electron transport) based on their charge transport characteristics. As of now, the majority of reported conjugated materials are of the p-type semiconductor category, with research on n-type or ambipolar conjugated materials lagging significantly behind. This review introduces the molecular design concept for enhancing charge carrier mobility, addressing both within the semiconductor layer and charge injection aspects. Additionally, the process of designing or converting the semiconductor type is summarized. Lastly, this review discusses potential trends in evolution and challenges and provides an outlook; the ultimate objective is to outline a theoretical framework for designing high-performance organic semiconductors that can advance the development of OFET applications. MDPI 2023-10-11 /pmc/articles/PMC10607980/ /pubmed/37895626 http://dx.doi.org/10.3390/ma16206645 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Zhou, Yang Zhang, Keke Chen, Zhaoyang Zhang, Haichang Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review |
title | Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review |
title_full | Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review |
title_fullStr | Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review |
title_full_unstemmed | Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review |
title_short | Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review |
title_sort | molecular design concept for enhancement charge carrier mobility in ofets: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607980/ https://www.ncbi.nlm.nih.gov/pubmed/37895626 http://dx.doi.org/10.3390/ma16206645 |
work_keys_str_mv | AT zhouyang moleculardesignconceptforenhancementchargecarriermobilityinofetsareview AT zhangkeke moleculardesignconceptforenhancementchargecarriermobilityinofetsareview AT chenzhaoyang moleculardesignconceptforenhancementchargecarriermobilityinofetsareview AT zhanghaichang moleculardesignconceptforenhancementchargecarriermobilityinofetsareview |