Cargando…

Statistical Approaches to Identify Pairwise and High-Order Brain Functional Connectivity Signatures on a Single-Subject Basis

Keeping up with the shift towards personalized neuroscience essentially requires the derivation of meaningful insights from individual brain signal recordings by analyzing the descriptive indexes of physio-pathological states through statistical methods that prioritize subject-specific differences u...

Descripción completa

Detalles Bibliográficos
Autores principales: Sparacino, Laura, Faes, Luca, Mijatović, Gorana, Parla, Giuseppe, Lo Re, Vincenzina, Miraglia, Roberto, de Ville de Goyet, Jean, Sparacia, Gianvincenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608185/
https://www.ncbi.nlm.nih.gov/pubmed/37895456
http://dx.doi.org/10.3390/life13102075
Descripción
Sumario:Keeping up with the shift towards personalized neuroscience essentially requires the derivation of meaningful insights from individual brain signal recordings by analyzing the descriptive indexes of physio-pathological states through statistical methods that prioritize subject-specific differences under varying experimental conditions. Within this framework, the current study presents a methodology for assessing the value of the single-subject fingerprints of brain functional connectivity, assessed both by standard pairwise and novel high-order measures. Functional connectivity networks, which investigate the inter-relationships between pairs of brain regions, have long been a valuable tool for modeling the brain as a complex system. However, their usefulness is limited by their inability to detect high-order dependencies beyond pairwise correlations. In this study, by leveraging multivariate information theory, we confirm recent evidence suggesting that the brain contains a plethora of high-order, synergistic subsystems that would go unnoticed using a pairwise graph structure. The significance and variations across different conditions of functional pairwise and high-order interactions (HOIs) between groups of brain signals are statistically verified on an individual level through the utilization of surrogate and bootstrap data analyses. The approach is illustrated on the single-subject recordings of resting-state functional magnetic resonance imaging (rest-fMRI) signals acquired using a pediatric patient with hepatic encephalopathy associated with a portosystemic shunt and undergoing liver vascular shunt correction. Our results show that (i) the proposed single-subject analysis may have remarkable clinical relevance for subject-specific investigations and treatment planning, and (ii) the possibility of investigating brain connectivity and its post-treatment functional developments at a high-order level may be essential to fully capture the complexity and modalities of the recovery.