Cargando…
Structure and Properties of High-Entropy Boride Ceramics Synthesized by Mechanical Alloying and Spark Plasma Sintering
This manuscript shows the study of the structure, mechanical, and chemical properties of high-entropy borides MeB(2) (Me = Ti, Ta, Nb, Hf, Zr). High-entropy borides were synthesized by mechanical alloying and spark plasma sintering. A chemically homogeneous powder with a low iron content (0.12%) was...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608203/ https://www.ncbi.nlm.nih.gov/pubmed/37895726 http://dx.doi.org/10.3390/ma16206744 |
Sumario: | This manuscript shows the study of the structure, mechanical, and chemical properties of high-entropy borides MeB(2) (Me = Ti, Ta, Nb, Hf, Zr). High-entropy borides were synthesized by mechanical alloying and spark plasma sintering. A chemically homogeneous powder with a low iron content (0.12%) was obtained in a planetary mill by rotating the planetary disk/pots at 200–400 rpm and a processing time of 7.5 h. The structure, mechanical, and chemical properties of the resulting high-entropy borides have been studied. A single-phase hexagonal structure is formed during spark plasma sintering of mechanically alloyed powders at 2000 °C. The microhardness of the samples ranged from 1763 to 1959 HV. Gas-dynamic tests of the synthesized materials showed that an increase in the content of Zr and Hf in the composition increases the thermal-oxidative resistance of the material. |
---|