Cargando…
Microstructure and Corrosion Behavior of Zinc/Hydroxyapatite Multi-Layer Coating Prepared by Combining Cold Spraying and High-Velocity Suspension Flame Spraying
The study aims to enhance the corrosion resistance and bioactivity of Mg alloy substrates through the development of a zinc/hydroxyapatite multi-layer (Zn/HA-ML) coating. The Zn/HA-ML coating was prepared by depositing a cold-sprayed (CS) Zn underlayer and a high-velocity suspension flame sprayed (H...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608217/ https://www.ncbi.nlm.nih.gov/pubmed/37895763 http://dx.doi.org/10.3390/ma16206782 |
Sumario: | The study aims to enhance the corrosion resistance and bioactivity of Mg alloy substrates through the development of a zinc/hydroxyapatite multi-layer (Zn/HA-ML) coating. The Zn/HA-ML coating was prepared by depositing a cold-sprayed (CS) Zn underlayer and a high-velocity suspension flame sprayed (HVSFS) Zn/HA multi-layer and was compared with the CS Zn coating and the Zn/HA dual-layer (Zn/HA-DL) coating. Phase, microstructure, and bonding strength were examined, respectively, by X-ray diffraction, scanning electron microscopy, and tensile bonding testing. Corrosion behavior and bioactivity were investigated using potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion testing. Results show that the HVSFS Zn/HA composite layers were mainly composed of Zn, HA, and ZnO and were well bonded to the substrate. The HVSFS HA upper layer on the CS Zn underlayer in the Zn/HA-DL coating exhibited microcracks due to their mismatched thermal expansion coefficient (CTE). The Zn/HA-ML coating exhibited good bonding within different layers and showed a higher bonding strength of 27.3 ± 2.3 MPa than the Zn/HA-DL coating of 20.4 ± 2.7 MPa. The CS Zn coating, Zn/HA-DL coating, and Zn/HA-ML coating decreased the corrosion current density of the Mg alloy substrate by around two–fourfold from 3.12 ± 0.75 mA/cm(2) to 1.41 ± 0.82mA/cm(2), 1.06 ± 0.31 mA/cm(2), and 0.88 ± 0.27 mA/cm(2), respectively. The Zn/HA-ML coating showed a sixfold decrease in the corrosion current density and more improvements in the corrosion resistance by twofold after an immersion time of 14 days, which was mainly attributed to newly formed apatite and corrosion by-products of Zn particles. The Zn/HA-ML coating effectively combined the advantages of the corrosion resistance of CS Zn underlayer and the bioactivity of HVSFS Zn/HA multi-layers, which proposed a low-temperature strategy for improving corrosion resistance and bioactivity for implant metals. |
---|