Cargando…
Controlled Delivery of 2-Mercapto 1-Methyl Imidazole by Metal–Organic Framework for Efficient Inhibition of Copper Corrosion in NaCl Solution
In this paper, zeolitic imidazolate framework-8 was modified by N-(3-aminopropyl)-imidazole to obtain a novel MOF called AMOF. Subsequently, AMOF served as a carrier for the delivery of 2-mercapto-1-methyl imidazole (MMI) to inhibit the corrosion of Cu. Scanning electron microscopy, Fourier transfor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608228/ https://www.ncbi.nlm.nih.gov/pubmed/37895694 http://dx.doi.org/10.3390/ma16206712 |
Sumario: | In this paper, zeolitic imidazolate framework-8 was modified by N-(3-aminopropyl)-imidazole to obtain a novel MOF called AMOF. Subsequently, AMOF served as a carrier for the delivery of 2-mercapto-1-methyl imidazole (MMI) to inhibit the corrosion of Cu. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were applied to characterize the morphologies and structures of AMOF and AMOF@MMI. Ultraviolet-visible spectroscopy and thermogravimetric analysis were adopted to value the capacity of the load and release of the AMOF, respectively. The mass ratio of loaded MMI molecules was 18.15%. In addition, the inhibition behavior of AMOF@MMI for Cu was evaluated by polarization curves and electrochemical impedance spectroscopy. The results indicated that the AMOF loaded MMI successfully, and the released MMI could adsorb on the Cu surface and inhibit the Cu corrosion. The inhibition efficiency could reach 88.2%. The binding and interaction energies between the AMOF surface and the MMI were −16.41 kJ/mol and −20.27 kJ/mol. |
---|