Cargando…

Effect of Alloying Elements on the Short-Range Orders and Atomic Diffusion Behavior of Liquid Al−9Si Cast Alloys

To investigate the influence of alloying elements (Zn, Mg, and Cu) on the structural and dynamical properties of liquid Al−9Si alloy, we conducted ab initio molecular dynamics (AIMD) simulations. Our results indicate that the structure of Al−Si−M ternary alloys is determined with a combination of at...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xunming, Liu, Dan, Wang, Jian, Chen, Candong, Li, Xinxin, Wang, Li, Wang, Mingxu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608452/
https://www.ncbi.nlm.nih.gov/pubmed/37895750
http://dx.doi.org/10.3390/ma16206768
Descripción
Sumario:To investigate the influence of alloying elements (Zn, Mg, and Cu) on the structural and dynamical properties of liquid Al−9Si alloy, we conducted ab initio molecular dynamics (AIMD) simulations. Our results indicate that the structure of Al−Si−M ternary alloys is determined with a combination of atomic radii and mixing enthalpy, while the dynamic properties are primarily influenced by electronic structure of the alloying elements. Specifically, the addition of Cu promotes the formation of Al−Cu short-range order (SRO), while Zn has a higher propensity for Zn−Zn SRO. The Al−Cu SRO in liquid alloy may serve as the precursor for the Al(2)Cu reinforcing phase in Al−Si−Cu alloys. Upon the addition of Mg, a greater number of relatively stable perfect and distorted icosahedral structures, as well as hcp and bcc ordered structures with lower energies, are observed. Additionally, the presence of Mg leads to a reduction in the atomic diffusion rates of Al and Si, while Cu and Zn exhibit complex diffusion behavior influenced by the presence of Si atoms.