Cargando…
Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance
The challenge of developing a high-efficiency microwave absorbent remains, because of the compatibility between microwave absorption and high-temperature-resistant performance in practical application. Herein, a facile method is used to obtain serial MXene/BN-zxy composites, where zx:y indicates the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608534/ https://www.ncbi.nlm.nih.gov/pubmed/37895733 http://dx.doi.org/10.3390/ma16206752 |
_version_ | 1785127802928889856 |
---|---|
author | Zhang, Weidong Wen, Haoliang Gou, Yaping Zhao, Yun Zhang, Zhiqiang Qiao, Yali |
author_facet | Zhang, Weidong Wen, Haoliang Gou, Yaping Zhao, Yun Zhang, Zhiqiang Qiao, Yali |
author_sort | Zhang, Weidong |
collection | PubMed |
description | The challenge of developing a high-efficiency microwave absorbent remains, because of the compatibility between microwave absorption and high-temperature-resistant performance in practical application. Herein, a facile method is used to obtain serial MXene/BN-zxy composites, where zx:y indicates the weight ratio of MXene and boron nitride (BN) in the composites, with adjustable microwave absorption performance (MAP) which can be regulated by the ratio of MXene and the BN nanosheet. In particular, the as-prepared absorbents with supercapacitance-like structure significantly enhanced the MAP and could be served more than 900 °C. The results of MAP reveal that the minimum reflection loss (RL) can reach −20.94 dB with a MXene/BN-101 composite coating thickness of 4.0 mm; the effective attenuation bandwidth (RL< −10 dB, i.e., 90% microwave energy is attenuated) is up to 9.71 GHz (7.94–17.65 GHz). From a detailed analysis, it is observed that attenuation is the critical limiting factor for MAPs rather than impedance mismatch, which can be assigned to the poor MAP of BN nanosheets. In any case, as-prepared absorbents have potential applications in the field of heating components. |
format | Online Article Text |
id | pubmed-10608534 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106085342023-10-28 Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance Zhang, Weidong Wen, Haoliang Gou, Yaping Zhao, Yun Zhang, Zhiqiang Qiao, Yali Materials (Basel) Article The challenge of developing a high-efficiency microwave absorbent remains, because of the compatibility between microwave absorption and high-temperature-resistant performance in practical application. Herein, a facile method is used to obtain serial MXene/BN-zxy composites, where zx:y indicates the weight ratio of MXene and boron nitride (BN) in the composites, with adjustable microwave absorption performance (MAP) which can be regulated by the ratio of MXene and the BN nanosheet. In particular, the as-prepared absorbents with supercapacitance-like structure significantly enhanced the MAP and could be served more than 900 °C. The results of MAP reveal that the minimum reflection loss (RL) can reach −20.94 dB with a MXene/BN-101 composite coating thickness of 4.0 mm; the effective attenuation bandwidth (RL< −10 dB, i.e., 90% microwave energy is attenuated) is up to 9.71 GHz (7.94–17.65 GHz). From a detailed analysis, it is observed that attenuation is the critical limiting factor for MAPs rather than impedance mismatch, which can be assigned to the poor MAP of BN nanosheets. In any case, as-prepared absorbents have potential applications in the field of heating components. MDPI 2023-10-18 /pmc/articles/PMC10608534/ /pubmed/37895733 http://dx.doi.org/10.3390/ma16206752 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Weidong Wen, Haoliang Gou, Yaping Zhao, Yun Zhang, Zhiqiang Qiao, Yali Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance |
title | Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance |
title_full | Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance |
title_fullStr | Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance |
title_full_unstemmed | Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance |
title_short | Preparation of MXene/BN Composites with Adjustable Microwave Absorption Performance |
title_sort | preparation of mxene/bn composites with adjustable microwave absorption performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608534/ https://www.ncbi.nlm.nih.gov/pubmed/37895733 http://dx.doi.org/10.3390/ma16206752 |
work_keys_str_mv | AT zhangweidong preparationofmxenebncompositeswithadjustablemicrowaveabsorptionperformance AT wenhaoliang preparationofmxenebncompositeswithadjustablemicrowaveabsorptionperformance AT gouyaping preparationofmxenebncompositeswithadjustablemicrowaveabsorptionperformance AT zhaoyun preparationofmxenebncompositeswithadjustablemicrowaveabsorptionperformance AT zhangzhiqiang preparationofmxenebncompositeswithadjustablemicrowaveabsorptionperformance AT qiaoyali preparationofmxenebncompositeswithadjustablemicrowaveabsorptionperformance |