Cargando…
Machine Learning Prediction of the Redox Activity of Quinones
The redox properties of quinones underlie their unique characteristics as organic battery components that outperform the conventional inorganic ones. Furthermore, these redox properties could be precisely tuned by using different substituent groups. Machine learning and statistics, on the other hand...
Autores principales: | Kichev, Ilia, Borislavov, Lyuben, Tadjer, Alia, Stoyanova, Radostina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608659/ https://www.ncbi.nlm.nih.gov/pubmed/37895669 http://dx.doi.org/10.3390/ma16206687 |
Ejemplares similares
-
Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries
por: Danchovski, Yanislav, et al.
Publicado: (2022) -
Redox Hyperactive MOF for Li(+), Na(+) and Mg(2+) Storage
por: Rasheev, Hristo, et al.
Publicado: (2022) -
Rivalry at the Interface: Ion Desolvation and Electrolyte
Degradation in Model Ethylene Carbonate Complexes of Li(+), Na(+), and Mg(2+) with PF(6)(–) on the Li(4)Ti(5)O(12) (111) Surface
por: Rasheev, Hristo, et al.
Publicado: (2021) -
Dinuclear vs. Mononuclear Copper(II) Coordination Species of Tylosin and Tilmicosin in Non-Aqueous Solutions
por: Pantcheva, Ivayla, et al.
Publicado: (2022) -
Density functional theory and machine learning for electrochemical square-scheme prediction: an application to quinone-type molecules relevant to redox flow batteries
por: Hashemi, Arsalan, et al.
Publicado: (2023)