Cargando…
Simulation and Experimental of Infiltration and Solidification Process for Al(2)O(3(3D))/5083Al Interpenetrating Phase Composite for High Speed Train Prepared by Low-Pressure Infiltration
Understanding the infiltration and solidification processes of liquid 5083Al alloy into Al(2)O(3) three-dimensional reticulated porous ceramic (Al(2)O(3(3D)) RPC) is essential for optimizing the microstructure and properties of Al(2)O(3(3D))/5083Al interpenetrating phase composites (IPCs) prepared b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608752/ https://www.ncbi.nlm.nih.gov/pubmed/37895616 http://dx.doi.org/10.3390/ma16206634 |
Sumario: | Understanding the infiltration and solidification processes of liquid 5083Al alloy into Al(2)O(3) three-dimensional reticulated porous ceramic (Al(2)O(3(3D)) RPC) is essential for optimizing the microstructure and properties of Al(2)O(3(3D))/5083Al interpenetrating phase composites (IPCs) prepared by low-pressure infiltration process (LPIP). This study employs ProCAST software to simulate the infiltration and solidification processes of liquid 5083Al with pouring velocities (PV) of 0.4 m/s infiltrating into Al(2)O(3(3D)) RPC preforms with varying porosities at different pouring temperatures (PT) to prepare Al(2)O(3(3D))/5083Al IPCs using LPIP. The results demonstrate that pore diameter of Al(2)O(3(3D)) RPC preforms and PT of liquid 5083Al significantly influence the of the infiltration. Solidification process analysis reveals that the Al(2)O(3(3D)) RPC preform with smaller pore diameters allows the lower pouring velocity of 5083Al to solidify faster compared to the preform with larger pore diameters. Al(2)O(3(3D))/5083Al IPCs were prepared successfully from Al(2)O(3(3D)) RPC porosity of 15 PPI with liquid 5083Al at PV 0.4 m/s and PT 800 °C using LPIP, resulting in nearly fully dense composites, where both Al(2)O(3(3D)) RPCs and 5083Al interpenetrate throughout the microstructure. The infiltration and solidification defects were reduced under air pressure of 0.3 MPa (corresponding to PV of 0.4 m/s) during LPIP. Finite volume method simulations are in good agreement with experimental data, validating the suitability of the simplified model for Al(2)O(3(3D)) RPCs in the infiltration simulation. |
---|