Cargando…

Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction

Multimodal neuroimaging has gained traction in Alzheimer’s Disease (AD) diagnosis by integrating information from multiple imaging modalities to enhance classification accuracy. However, effectively handling heterogeneous data sources and overcoming the challenges posed by multiscale transform metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Odusami, Modupe, Maskeliūnas, Rytis, Damaševičius, Robertas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608760/
https://www.ncbi.nlm.nih.gov/pubmed/37888107
http://dx.doi.org/10.3390/jpm13101496
_version_ 1785127856412557312
author Odusami, Modupe
Maskeliūnas, Rytis
Damaševičius, Robertas
author_facet Odusami, Modupe
Maskeliūnas, Rytis
Damaševičius, Robertas
author_sort Odusami, Modupe
collection PubMed
description Multimodal neuroimaging has gained traction in Alzheimer’s Disease (AD) diagnosis by integrating information from multiple imaging modalities to enhance classification accuracy. However, effectively handling heterogeneous data sources and overcoming the challenges posed by multiscale transform methods remains a significant hurdle. This article proposes a novel approach to address these challenges. To harness the power of diverse neuroimaging data, we employ a strategy that leverages optimized convolution techniques. These optimizations include varying kernel sizes and the incorporation of instance normalization, both of which play crucial roles in feature extraction from magnetic resonance imaging (MRI) and positron emission tomography (PET) images. Specifically, varying kernel sizes allow us to adapt the receptive field to different image characteristics, enhancing the model’s ability to capture relevant information. Furthermore, we employ transposed convolution, which increases spatial resolution of feature maps, and it is optimized with varying kernel sizes and instance normalization. This heightened resolution facilitates the alignment and integration of data from disparate MRI and PET data. The use of larger kernels and strides in transposed convolution expands the receptive field, enabling the model to capture essential cross-modal relationships. Instance normalization, applied to each modality during the fusion process, mitigates potential biases stemming from differences in intensity, contrast, or scale between modalities. This enhancement contributes to improved model performance by reducing complexity and ensuring robust fusion. The performance of the proposed fusion method is assessed on three distinct neuroimaging datasets, which include: Alzheimer’s Disease Neuroimaging Initiative (ADNI), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, AD, and Early Mild Cognitive); Open Access Series of Imaging Studies (OASIS), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, Mild Dementia, Very Mild Dementia); and whole-brain atlas neuroimaging (AANLIB) (consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, AD). To evaluate the quality of the fused images generated via our method, we employ a comprehensive set of evaluation metrics, including Structural Similarity Index Measurement (SSIM), which assesses the structural similarity between two images; Peak Signal-to-Noise Ratio (PSNR), which measures how closely the generated image resembles the ground truth; Entropy (E), which assesses the amount of information preserved or lost during fusion; the Feature Similarity Indexing Method (FSIM), which assesses the structural and feature similarities between two images; and Edge-Based Similarity (EBS), which measures the similarity of edges between the fused and ground truth images. The obtained fused image is further evaluated using a Mobile Vision Transformer. In the classification of AD vs. Cognitive Normal, the model achieved an accuracy of 99.00%, specificity of 99.00%, and sensitivity of 98.44% on the AANLIB dataset.
format Online
Article
Text
id pubmed-10608760
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106087602023-10-28 Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction Odusami, Modupe Maskeliūnas, Rytis Damaševičius, Robertas J Pers Med Article Multimodal neuroimaging has gained traction in Alzheimer’s Disease (AD) diagnosis by integrating information from multiple imaging modalities to enhance classification accuracy. However, effectively handling heterogeneous data sources and overcoming the challenges posed by multiscale transform methods remains a significant hurdle. This article proposes a novel approach to address these challenges. To harness the power of diverse neuroimaging data, we employ a strategy that leverages optimized convolution techniques. These optimizations include varying kernel sizes and the incorporation of instance normalization, both of which play crucial roles in feature extraction from magnetic resonance imaging (MRI) and positron emission tomography (PET) images. Specifically, varying kernel sizes allow us to adapt the receptive field to different image characteristics, enhancing the model’s ability to capture relevant information. Furthermore, we employ transposed convolution, which increases spatial resolution of feature maps, and it is optimized with varying kernel sizes and instance normalization. This heightened resolution facilitates the alignment and integration of data from disparate MRI and PET data. The use of larger kernels and strides in transposed convolution expands the receptive field, enabling the model to capture essential cross-modal relationships. Instance normalization, applied to each modality during the fusion process, mitigates potential biases stemming from differences in intensity, contrast, or scale between modalities. This enhancement contributes to improved model performance by reducing complexity and ensuring robust fusion. The performance of the proposed fusion method is assessed on three distinct neuroimaging datasets, which include: Alzheimer’s Disease Neuroimaging Initiative (ADNI), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, AD, and Early Mild Cognitive); Open Access Series of Imaging Studies (OASIS), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, Mild Dementia, Very Mild Dementia); and whole-brain atlas neuroimaging (AANLIB) (consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, AD). To evaluate the quality of the fused images generated via our method, we employ a comprehensive set of evaluation metrics, including Structural Similarity Index Measurement (SSIM), which assesses the structural similarity between two images; Peak Signal-to-Noise Ratio (PSNR), which measures how closely the generated image resembles the ground truth; Entropy (E), which assesses the amount of information preserved or lost during fusion; the Feature Similarity Indexing Method (FSIM), which assesses the structural and feature similarities between two images; and Edge-Based Similarity (EBS), which measures the similarity of edges between the fused and ground truth images. The obtained fused image is further evaluated using a Mobile Vision Transformer. In the classification of AD vs. Cognitive Normal, the model achieved an accuracy of 99.00%, specificity of 99.00%, and sensitivity of 98.44% on the AANLIB dataset. MDPI 2023-10-14 /pmc/articles/PMC10608760/ /pubmed/37888107 http://dx.doi.org/10.3390/jpm13101496 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Odusami, Modupe
Maskeliūnas, Rytis
Damaševičius, Robertas
Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
title Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
title_full Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
title_fullStr Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
title_full_unstemmed Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
title_short Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
title_sort optimized convolutional fusion for multimodal neuroimaging in alzheimer’s disease diagnosis: enhancing data integration and feature extraction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608760/
https://www.ncbi.nlm.nih.gov/pubmed/37888107
http://dx.doi.org/10.3390/jpm13101496
work_keys_str_mv AT odusamimodupe optimizedconvolutionalfusionformultimodalneuroimaginginalzheimersdiseasediagnosisenhancingdataintegrationandfeatureextraction
AT maskeliunasrytis optimizedconvolutionalfusionformultimodalneuroimaginginalzheimersdiseasediagnosisenhancingdataintegrationandfeatureextraction
AT damaseviciusrobertas optimizedconvolutionalfusionformultimodalneuroimaginginalzheimersdiseasediagnosisenhancingdataintegrationandfeatureextraction