Cargando…
Optimized Convolutional Fusion for Multimodal Neuroimaging in Alzheimer’s Disease Diagnosis: Enhancing Data Integration and Feature Extraction
Multimodal neuroimaging has gained traction in Alzheimer’s Disease (AD) diagnosis by integrating information from multiple imaging modalities to enhance classification accuracy. However, effectively handling heterogeneous data sources and overcoming the challenges posed by multiscale transform metho...
Autores principales: | Odusami, Modupe, Maskeliūnas, Rytis, Damaševičius, Robertas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608760/ https://www.ncbi.nlm.nih.gov/pubmed/37888107 http://dx.doi.org/10.3390/jpm13101496 |
Ejemplares similares
-
Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer’s Disease Classification
por: Odusami, Modupe, et al.
Publicado: (2023) -
An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging
por: Odusami, Modupe, et al.
Publicado: (2022) -
Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network
por: Odusami, Modupe, et al.
Publicado: (2021) -
Reply to Nicholas et al. Using a ResNet-18 Network to Detect Features of Alzheimer’s Disease on Functional Magnetic Resonance Imaging: A Failed Replication. Comment on “Odusami et al. Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network. Diagnostics 2021, 11, 1071”
por: Odusami, Modupe, et al.
Publicado: (2022) -
Deep Convolutional Neural Network-Based Visual Stimuli Classification Using Electroencephalography Signals of Healthy and Alzheimer’s Disease Subjects
por: Komolovaitė, Dovilė, et al.
Publicado: (2022)