Cargando…

Comprehensive Analyses of Advanced Glycation end Products and Heterocyclic Amines in Peanuts during the Roasting Process

Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are two kinds of important harmful products formed simultaneously during the thermal processing of proteinaceous food. In this paper, the effect of roasting conditions on the formation of AGEs and HAs, as well as active carbonyl in...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Jingjing, Yu, Xiaohui, Shi, Lili, Liu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608810/
https://www.ncbi.nlm.nih.gov/pubmed/37894490
http://dx.doi.org/10.3390/molecules28207012
Descripción
Sumario:Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are two kinds of important harmful products formed simultaneously during the thermal processing of proteinaceous food. In this paper, the effect of roasting conditions on the formation of AGEs and HAs, as well as active carbonyl intermediates in common peanut (C−peanut) and high-oleic acid peanut (HO−peanut) was studied simultaneously for the first time. In general, with the increase in roasting temperature (160–200 °C) and time, the contents of AGEs, HAs and active carbonyl intermediates (i.e., glyoxal (GO) and methylglyoxal (MGO)) significantly increased in peanuts. Four kinds of HAs (i.e., AαC, DMIP, Harman and Norharman) were observed in roasted peanuts, of which Harman and Norharman accounted for about 93.0% of the total HAs content after roasting for 30 min at 200 °C. Furthermore, a correlation analysis among AGEs (i.e., N(ε)-(1-Carboxymethyl)-L-lysine (CML) and N(ε)-(1-Carboxyethyl)-L-lysine (CEL)), HAs, GO and MGO was conducted. Most of these compounds showed an excellent positive linear relationship (p ≤ 0.001) with each other. The evident increase in GO and MGO contents implied an increase in not only the content of AGEs but also HAs. However, contents of AGEs and HAs showed no significant difference between roasted HO−peanut and C−peanut. This study would provide a theoretical basis for simultaneously controlling the levels of AGEs and HAs in thermal processed peanut foods.