Cargando…

Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm

A comprehensive understanding of the linear/nonlinear dynamic behavior of wireless microresonators is essential for micro-electromechanical systems (MEMS) design optimization. This study investigates the dynamic behaviour of a magnetoelectric (ME) microresonator, using a finite element method (FEM)...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadeghi, Mohammad, Bazrafkan, Mohammad M., Rutner, Marcus, Faupel, Franz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608850/
https://www.ncbi.nlm.nih.gov/pubmed/37893315
http://dx.doi.org/10.3390/mi14101878
_version_ 1785127875268050944
author Sadeghi, Mohammad
Bazrafkan, Mohammad M.
Rutner, Marcus
Faupel, Franz
author_facet Sadeghi, Mohammad
Bazrafkan, Mohammad M.
Rutner, Marcus
Faupel, Franz
author_sort Sadeghi, Mohammad
collection PubMed
description A comprehensive understanding of the linear/nonlinear dynamic behavior of wireless microresonators is essential for micro-electromechanical systems (MEMS) design optimization. This study investigates the dynamic behaviour of a magnetoelectric (ME) microresonator, using a finite element method (FEM) and machine learning algorithm. First, the linear/nonlinear behaviour of a fabricated thin-film ME microactuator is assessed in both the time domain and frequency spectrum. Next, a data driven system identification (DDSI) procedure and simulated annealing (SA) method are implemented to reconstruct differential equations from measured datasets. The Duffing equation is employed to replicate the dynamic behavior of the ME microactuator. The Duffing coefficients such as mass, stiffness, damping, force amplitude, and excitation frequency are considered as input parameters. Meanwhile, the microactuator displacement is taken as the output parameter, which is measured experimentally via a laser Doppler vibrometer (LDV) device. To determine the optimal range and step size for input parameters, the sensitivity analysis is conducted using Latin hypercube sampling (LHS). The peak index matching (PIM) and correlation coefficient (CC) are considered assessment criteria for the objective function. The data-driven developed models are subsequently employed to reconstruct/predict mode shapes and the vibration amplitude over the time domain. The effect of driving signal nonlinearity and total harmonic distortion (THD) is explored experimentally under resonance and sub-resonance conditions. The vibration measurements reveal that as excitation levels increase, hysteresis variations become more noticeable, which may result in a higher prediction error in the Duffing array model. The verification test indicates that the first bending mode reconstructs reasonably with a prediction accuracy of about 92 percent. This proof-of-concept study demonstrates that the simulated annealing approach is a promising tool for modeling the dynamic behavior of MEMS systems, making it a strong candidate for real-world applications.
format Online
Article
Text
id pubmed-10608850
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106088502023-10-28 Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm Sadeghi, Mohammad Bazrafkan, Mohammad M. Rutner, Marcus Faupel, Franz Micromachines (Basel) Article A comprehensive understanding of the linear/nonlinear dynamic behavior of wireless microresonators is essential for micro-electromechanical systems (MEMS) design optimization. This study investigates the dynamic behaviour of a magnetoelectric (ME) microresonator, using a finite element method (FEM) and machine learning algorithm. First, the linear/nonlinear behaviour of a fabricated thin-film ME microactuator is assessed in both the time domain and frequency spectrum. Next, a data driven system identification (DDSI) procedure and simulated annealing (SA) method are implemented to reconstruct differential equations from measured datasets. The Duffing equation is employed to replicate the dynamic behavior of the ME microactuator. The Duffing coefficients such as mass, stiffness, damping, force amplitude, and excitation frequency are considered as input parameters. Meanwhile, the microactuator displacement is taken as the output parameter, which is measured experimentally via a laser Doppler vibrometer (LDV) device. To determine the optimal range and step size for input parameters, the sensitivity analysis is conducted using Latin hypercube sampling (LHS). The peak index matching (PIM) and correlation coefficient (CC) are considered assessment criteria for the objective function. The data-driven developed models are subsequently employed to reconstruct/predict mode shapes and the vibration amplitude over the time domain. The effect of driving signal nonlinearity and total harmonic distortion (THD) is explored experimentally under resonance and sub-resonance conditions. The vibration measurements reveal that as excitation levels increase, hysteresis variations become more noticeable, which may result in a higher prediction error in the Duffing array model. The verification test indicates that the first bending mode reconstructs reasonably with a prediction accuracy of about 92 percent. This proof-of-concept study demonstrates that the simulated annealing approach is a promising tool for modeling the dynamic behavior of MEMS systems, making it a strong candidate for real-world applications. MDPI 2023-09-29 /pmc/articles/PMC10608850/ /pubmed/37893315 http://dx.doi.org/10.3390/mi14101878 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sadeghi, Mohammad
Bazrafkan, Mohammad M.
Rutner, Marcus
Faupel, Franz
Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
title Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
title_full Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
title_fullStr Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
title_full_unstemmed Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
title_short Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
title_sort modeling of magnetoelectric microresonator using numerical method and simulated annealing algorithm
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608850/
https://www.ncbi.nlm.nih.gov/pubmed/37893315
http://dx.doi.org/10.3390/mi14101878
work_keys_str_mv AT sadeghimohammad modelingofmagnetoelectricmicroresonatorusingnumericalmethodandsimulatedannealingalgorithm
AT bazrafkanmohammadm modelingofmagnetoelectricmicroresonatorusingnumericalmethodandsimulatedannealingalgorithm
AT rutnermarcus modelingofmagnetoelectricmicroresonatorusingnumericalmethodandsimulatedannealingalgorithm
AT faupelfranz modelingofmagnetoelectricmicroresonatorusingnumericalmethodandsimulatedannealingalgorithm