Cargando…
Opening the Random Forest Black Box of (1)H NMR Metabolomics Data by the Exploitation of Surrogate Variables
The untargeted metabolomics analysis of biological samples with nuclear magnetic resonance (NMR) provides highly complex data containing various signals from different molecules. To use these data for classification, e.g., in the context of food authentication, machine learning methods are used. The...
Autores principales: | Wenck, Soeren, Mix, Thorsten, Fischer, Markus, Hackl, Thomas, Seifert, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608983/ https://www.ncbi.nlm.nih.gov/pubmed/37887402 http://dx.doi.org/10.3390/metabo13101075 |
Ejemplares similares
-
Opening the Random Forest Black Box of the Metabolome by the Application of Surrogate Minimal Depth
por: Wenck, Soeren, et al.
Publicado: (2021) -
Exploitation of surrogate variables in random forests for unbiased analysis of mutual impact and importance of features
por: Voges, Lucas F, et al.
Publicado: (2023) -
Surrogate minimal depth as an importance measure for variables in random forests
por: Seifert, Stephan, et al.
Publicado: (2019) -
Food Monitoring: Limitations of Accelerated Storage to Predict Molecular Changes in Hazelnuts (Corylus avellana L.) under Realistic Conditions Using UPLC-ESI-IM-QTOF-MS
por: Loesel, Henri, et al.
Publicado: (2023) -
Black-box and surrogate optimization for tuning spiking neural models of striatum plasticity
por: Cruz, Nicolás C., et al.
Publicado: (2022)