Cargando…
A Design Methodology for Fault-Tolerant Neuromorphic Computing Using Bayesian Neural Network
Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic...
Autores principales: | Gao, Di, Xie, Xiaoru, Wei, Dongxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608997/ https://www.ncbi.nlm.nih.gov/pubmed/37893277 http://dx.doi.org/10.3390/mi14101840 |
Ejemplares similares
-
Fault-tolerant computer system design
por: Pradhan, Dhiraj K
Publicado: (1996) -
Editorial: Hardware implementation of spike-based neuromorphic computing and its design methodologies
por: Zhang, Lining, et al.
Publicado: (2023) -
A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network
por: Liu, Zengkai, et al.
Publicado: (2015) -
Fault-tolerant design
por: Dubrova, Elena
Publicado: (2013) -
From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration
por: Oess, Timo, et al.
Publicado: (2020)