Cargando…
Utilizing Mixed Training and Multi-Head Attention to Address Data Shift in AI-Based Electromagnetic Solvers for Nano-Structured Metamaterials
When designing nano-structured metamaterials with an iterative optimization method, a fast deep learning solver is desirable to replace a time-consuming numerical solver, and the related issue of data shift is a subtle yet easily overlooked challenge. In this work, we explore the data shift challeng...
Autores principales: | Zeng, Zhenjia, Wang, Lei, Wu, Yiran, Hu, Zhipeng, Evans, Julian, Zhu, Xinhua, Ye, Gaoao, He, Sailing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609168/ https://www.ncbi.nlm.nih.gov/pubmed/37887929 http://dx.doi.org/10.3390/nano13202778 |
Ejemplares similares
-
An Advanced Electromagnetic Eigenmode Solver for Vacuum Electronics Devices - CTLSS
por: Cooke, S J, et al.
Publicado: (1999) -
Electromagnetic metamaterials: modern insights into macroscopic electromagnetic fields
por: Sakoda, Kazuaki
Publicado: (2019) -
Multi-AI competing and winning against humans in iterated Rock-Paper-Scissors game
por: Wang, Lei, et al.
Publicado: (2020) -
Broadband metamaterials in electromagnetics: technology and applications
por: Werner, Douglas H
Publicado: (2016) -
Controlling the Electromagnetic Field Confinement with Metamaterials
por: Bonache, Jordi, et al.
Publicado: (2016)