Cargando…
Characterization of PEDOT:PSS Nanofilms Printed via Electrically Assisted Direct Ink Deposition with Ultrasonic Vibrations
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has emerged as a promising conductive polymer for constructing efficient hole-transport layers (HTLs) in perovskite solar cells (PSCs). However, conventional fabrication methods, such as spin coating, spray coating, and slot-die coa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609184/ https://www.ncbi.nlm.nih.gov/pubmed/37894588 http://dx.doi.org/10.3390/molecules28207109 |
Sumario: | Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has emerged as a promising conductive polymer for constructing efficient hole-transport layers (HTLs) in perovskite solar cells (PSCs). However, conventional fabrication methods, such as spin coating, spray coating, and slot-die coating, have resulted in PEDOT:PSS nanofilms with limited performance, characterized by a low density and non-uniform nanostructures. We introduce a novel 3D-printing approach called electrically assisted direct ink deposition with ultrasonic vibrations (EF-DID-UV) to overcome these challenges. This innovative printing method combines programmable acoustic field modulation with electrohydrodynamic spraying, providing a powerful tool for controlling the PEDOT:PSS nanofilm’s morphology precisely. The experimental findings indicate that when PEDOT:PSS nanofilms are crafted using horizontal ultrasonic vibrations, they demonstrate a uniform dispersion of PEDOT:PSS nanoparticles, setting them apart from instances involving vertical ultrasonic vibrations, both prior to and after the printing process. In particular, when horizontal ultrasonic vibrations are applied at a low amplitude (0.15 A) during printing, these nanofilms showcase exceptional wettability performance, with a contact angle of 16.24°, and impressive electrical conductivity of 2092 Ω/square. Given its ability to yield high-performance PEDOT:PSS nanofilms with precisely controlled nanostructures, this approach holds great promise for a wide range of nanotechnological applications, including the production of solar cells, wearable sensors, and actuators. |
---|