Cargando…
Mechanochemical Synthesis of PdO(2) Nanoparticles Immobilized over Silica Gel for Catalytic Suzuki–Miyaura Cross-Coupling Reactions Leading to the C-3 Modification of 1H-Indazole with Phenylboronic Acids
The C-3 modification of 1H-indazole has produced active pharmaceuticals for the treatment of cancer and HIV. But, so far, this transformation has seemed less available, due to the lack of efficient C-C bond formation at the less reactive C-3 position. In this work, a series of silica gel-supported P...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609228/ https://www.ncbi.nlm.nih.gov/pubmed/37894668 http://dx.doi.org/10.3390/molecules28207190 |
Sumario: | The C-3 modification of 1H-indazole has produced active pharmaceuticals for the treatment of cancer and HIV. But, so far, this transformation has seemed less available, due to the lack of efficient C-C bond formation at the less reactive C-3 position. In this work, a series of silica gel-supported PdO(2) nanoparticles of 25–66 nm size were prepared by ball milling silica gel with divalent palladium precursors, and then employed as catalysts for the Suzuki–Miyaura cross-coupling of 1H-indazole derivative with phenylboronic acid. All the synthesized catalysts showed much higher cross-coupling yields than their palladium precursors, and could also be reused three times without losing high activity and selectivity in a toluene/water/ethanol mixed solvent. Although the palladium precursors showed an order of activity of PdCl(2)(dppf, 1,1′-bis(diphenylphosphino)ferrocene) > PdCl(2)(dtbpf, 1,1′-bis(di-tert-butylphosphino)ferrocene) > Pd(OAc, acetate)(2), the synthesized catalysts showed an order of C1 (from Pd(OAc)(2)) > C3 (from PdCl(2)(dtbpf)) > C2 (from PdCl(2)(dppf)), which conformed to the orders of BET (Brunauer–Emmett–Teller) surface areas and acidities of these catalysts. Notably, the most inexpensive Pd(OAc)(2) can be used as a palladium precursor for the synthesis of the best catalyst through simple ball milling. This work provides a highly active and inexpensive series of catalysts for C-3 modification of 1H-indazole, which are significant for the large-scale production of 1H-indazole-based pharmaceuticals. |
---|