Cargando…
Tuning Interlayer Exciton Emission with TMD Alloys in van der Waals Heterobilayers of Mo(0.5)W(0.5)Se(2) and Its Binary Counterparts
Semiconductor heterostructures have been the backbone of developments in electronic and optoelectronic devices. One class of structures of interest is the so-called type II band alignment, in which optically excited electrons and holes relax into different material layers. The unique properties obse...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609229/ https://www.ncbi.nlm.nih.gov/pubmed/37887920 http://dx.doi.org/10.3390/nano13202769 |
Sumario: | Semiconductor heterostructures have been the backbone of developments in electronic and optoelectronic devices. One class of structures of interest is the so-called type II band alignment, in which optically excited electrons and holes relax into different material layers. The unique properties observed in two-dimensional transition metal dichalcogenides and the possibility to engineer van der Waals heterostructures make them candidates for future high-tech devices. In these structures, electronic, optical, and magnetic properties can be tuned through the interlayer coupling, thereby opening avenues for developing new functional materials. We report the possibility of explicitly tuning the emission of interlayer exciton energies in the binary–ternary heterobilayer of Mo [Formula: see text] W [Formula: see text] Se [Formula: see text] with MoSe [Formula: see text] and WSe [Formula: see text]. The respective interlayer energies of 1.516 eV and 1.490 eV were observed from low-temperature photoluminescence measurements for the MoSe [Formula: see text] – and WSe [Formula: see text] – based heterostructures, respectively. These interlayer emission energies are above those reported for MoSe [Formula: see text] /WSe [Formula: see text] (≃1.30–1.45 eV). Consequently, binary–ternary heterostructure systems offer an extended energy range and tailored emission energies not accessible with the binary counterparts. Moreover, even though Mo [Formula: see text] W [Formula: see text] Se [Formula: see text] and MoSe [Formula: see text] have almost similar optical gaps, their band offsets are different, resulting in charge transfer between the monolayers following the optical excitation. Thus, confirming TMDs alloys can be used to tune the band-offsets, which adds another design parameter for application-specific optoelectronic devices. |
---|