Cargando…
Spectral Failsafe System of High-Power Laser Using Dual Fiber Bragg Gratings
Phase-modulated (PM) spectral failsafe systems are necessary to promptly terminate amplification processes following accidental seeding of a high-power laser chain with a non-PM pulse to prevent optical damage. In this work, we present a reliable spectral failsafe system that can indicate the presen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609232/ https://www.ncbi.nlm.nih.gov/pubmed/37893364 http://dx.doi.org/10.3390/mi14101927 |
Sumario: | Phase-modulated (PM) spectral failsafe systems are necessary to promptly terminate amplification processes following accidental seeding of a high-power laser chain with a non-PM pulse to prevent optical damage. In this work, we present a reliable spectral failsafe system that can indicate the presence or absence of sufficient PM light. This requirement is met by combining dual temperature-sensitive fiber Bragg gratings detection with high-speed RF amplitude comparisons. The failsafe trigger signal is generated when the spectral power at the peak sideband exceeds that at the center. The spectral failsafe system has the ability to distinguish between adequate and inadequate PM pulses, and it exhibits significant robustness in pulse width, TEC temperature drift, and DFB wavelength drift in experiments, making it valuable for safe high-power laser operations and providing a useful reference for other detection system designs. |
---|