Cargando…
Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips †
Microfluidics evolved with the appearance of polydimethylsiloxane (PDMS), an elastomer with a short processing time and the possibility for replication on a micrometric scale. Despite the many advantages of PDMS, there are well-known drawbacks, such as the hydrophobic surface, the absorption of smal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609239/ https://www.ncbi.nlm.nih.gov/pubmed/37893274 http://dx.doi.org/10.3390/mi14101837 |
_version_ | 1785127966968119296 |
---|---|
author | Rodrigues, Rodolfo G. Condelipes, Pedro G. M. Rosa, Rafaela R. Chu, Virginia Conde, João Pedro |
author_facet | Rodrigues, Rodolfo G. Condelipes, Pedro G. M. Rosa, Rafaela R. Chu, Virginia Conde, João Pedro |
author_sort | Rodrigues, Rodolfo G. |
collection | PubMed |
description | Microfluidics evolved with the appearance of polydimethylsiloxane (PDMS), an elastomer with a short processing time and the possibility for replication on a micrometric scale. Despite the many advantages of PDMS, there are well-known drawbacks, such as the hydrophobic surface, the absorption of small molecules, the low stiffness, relatively high cost, and the difficulty of scaling up the fabrication process for industrial production, creating a need for alternative materials. One option is the use of stiffer thermoplastics, such as the cyclic olefin copolymer (COC), which can be mass produced, have lower cost and possess excellent properties. In this work, a method to fabricate COC microfluidic structures was developed. The work was divided into process optimization and evaluation of material properties for application in microfluidics. In the processing step, moulding, sealing, and liquid handling aspects were developed and optimized. The resulting COC devices were evaluated from the point of view of molecular diffusion, burst pressure, temperature resistance, and susceptibility to surface treatments and these results were compared to PDMS devices. Lastly, a target DNA hybridization assay was performed showing the potential of the COC-based microfluidic device to be used in biosensing and Lab-on-a-Chip applications. |
format | Online Article Text |
id | pubmed-10609239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106092392023-10-28 Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † Rodrigues, Rodolfo G. Condelipes, Pedro G. M. Rosa, Rafaela R. Chu, Virginia Conde, João Pedro Micromachines (Basel) Article Microfluidics evolved with the appearance of polydimethylsiloxane (PDMS), an elastomer with a short processing time and the possibility for replication on a micrometric scale. Despite the many advantages of PDMS, there are well-known drawbacks, such as the hydrophobic surface, the absorption of small molecules, the low stiffness, relatively high cost, and the difficulty of scaling up the fabrication process for industrial production, creating a need for alternative materials. One option is the use of stiffer thermoplastics, such as the cyclic olefin copolymer (COC), which can be mass produced, have lower cost and possess excellent properties. In this work, a method to fabricate COC microfluidic structures was developed. The work was divided into process optimization and evaluation of material properties for application in microfluidics. In the processing step, moulding, sealing, and liquid handling aspects were developed and optimized. The resulting COC devices were evaluated from the point of view of molecular diffusion, burst pressure, temperature resistance, and susceptibility to surface treatments and these results were compared to PDMS devices. Lastly, a target DNA hybridization assay was performed showing the potential of the COC-based microfluidic device to be used in biosensing and Lab-on-a-Chip applications. MDPI 2023-09-27 /pmc/articles/PMC10609239/ /pubmed/37893274 http://dx.doi.org/10.3390/mi14101837 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodrigues, Rodolfo G. Condelipes, Pedro G. M. Rosa, Rafaela R. Chu, Virginia Conde, João Pedro Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † |
title | Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † |
title_full | Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † |
title_fullStr | Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † |
title_full_unstemmed | Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † |
title_short | Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips † |
title_sort | scalable processing of cyclic olefin copolymer (coc) microfluidic biochips † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609239/ https://www.ncbi.nlm.nih.gov/pubmed/37893274 http://dx.doi.org/10.3390/mi14101837 |
work_keys_str_mv | AT rodriguesrodolfog scalableprocessingofcyclicolefincopolymercocmicrofluidicbiochips AT condelipespedrogm scalableprocessingofcyclicolefincopolymercocmicrofluidicbiochips AT rosarafaelar scalableprocessingofcyclicolefincopolymercocmicrofluidicbiochips AT chuvirginia scalableprocessingofcyclicolefincopolymercocmicrofluidicbiochips AT condejoaopedro scalableprocessingofcyclicolefincopolymercocmicrofluidicbiochips |