Cargando…
Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3
Genome mining and metabolomics have become valuable tools in natural products research to evaluate and identify potential new chemistry from bacteria. In the search for new compounds from the deep-sea organism, Pseudomonas sp. SST3, from the South Shetland Trough, Antarctica, a co-cultivation with a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609385/ https://www.ncbi.nlm.nih.gov/pubmed/37894221 http://dx.doi.org/10.3390/microorganisms11102563 |
_version_ | 1785128001255505920 |
---|---|
author | Miranda, Kevin Jace Jaber, Saif Atoum, Dana Arjunan, Subha Ebel, Rainer Jaspars, Marcel Edrada-Ebel, RuAngelie |
author_facet | Miranda, Kevin Jace Jaber, Saif Atoum, Dana Arjunan, Subha Ebel, Rainer Jaspars, Marcel Edrada-Ebel, RuAngelie |
author_sort | Miranda, Kevin Jace |
collection | PubMed |
description | Genome mining and metabolomics have become valuable tools in natural products research to evaluate and identify potential new chemistry from bacteria. In the search for new compounds from the deep-sea organism, Pseudomonas sp. SST3, from the South Shetland Trough, Antarctica, a co-cultivation with a second deep-sea Pseudomonas zhaodongensis SST2, was undertaken to isolate pseudomonassin, a ribosomally synthesised and post-translationally modified peptide (RiPP) that belongs to a class of RiPP called lasso peptides. Pseudomonassin was identified using a genome-mining approach and isolated by means of mass spectrometric guided isolation. Extensive metabolomics analysis of the co-cultivation of Pseudomonas sp. SST3 and P. zhaodongensis SST2, Pseudomonas sp. SST3 and Escherichia coli, and P. zhaodongensis SST2 and E. coli were performed using principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA), which revealed potential new metabolites in the outlier regions of the co-cultivation, with other metabolites identified previously from other species of Pseudomonas. The sequence of pseudomonassin was completely deduced using high collision dissociation tandem mass spectrometry (HCD-MS/MS). Preliminary studies on its activity against the pathogenic P. aeruginosa and its biofilm formation have been assessed and produced a minimum inhibitory concentration (MIC) of 63 μg/mL and 28 μg/mL, respectively. |
format | Online Article Text |
id | pubmed-10609385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106093852023-10-28 Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 Miranda, Kevin Jace Jaber, Saif Atoum, Dana Arjunan, Subha Ebel, Rainer Jaspars, Marcel Edrada-Ebel, RuAngelie Microorganisms Article Genome mining and metabolomics have become valuable tools in natural products research to evaluate and identify potential new chemistry from bacteria. In the search for new compounds from the deep-sea organism, Pseudomonas sp. SST3, from the South Shetland Trough, Antarctica, a co-cultivation with a second deep-sea Pseudomonas zhaodongensis SST2, was undertaken to isolate pseudomonassin, a ribosomally synthesised and post-translationally modified peptide (RiPP) that belongs to a class of RiPP called lasso peptides. Pseudomonassin was identified using a genome-mining approach and isolated by means of mass spectrometric guided isolation. Extensive metabolomics analysis of the co-cultivation of Pseudomonas sp. SST3 and P. zhaodongensis SST2, Pseudomonas sp. SST3 and Escherichia coli, and P. zhaodongensis SST2 and E. coli were performed using principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA), which revealed potential new metabolites in the outlier regions of the co-cultivation, with other metabolites identified previously from other species of Pseudomonas. The sequence of pseudomonassin was completely deduced using high collision dissociation tandem mass spectrometry (HCD-MS/MS). Preliminary studies on its activity against the pathogenic P. aeruginosa and its biofilm formation have been assessed and produced a minimum inhibitory concentration (MIC) of 63 μg/mL and 28 μg/mL, respectively. MDPI 2023-10-15 /pmc/articles/PMC10609385/ /pubmed/37894221 http://dx.doi.org/10.3390/microorganisms11102563 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Miranda, Kevin Jace Jaber, Saif Atoum, Dana Arjunan, Subha Ebel, Rainer Jaspars, Marcel Edrada-Ebel, RuAngelie Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 |
title | Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 |
title_full | Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 |
title_fullStr | Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 |
title_full_unstemmed | Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 |
title_short | Pseudomonassin, a New Bioactive Ribosomally Synthesised and Post-Translationally Modified Peptide from Pseudomonas sp. SST3 |
title_sort | pseudomonassin, a new bioactive ribosomally synthesised and post-translationally modified peptide from pseudomonas sp. sst3 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609385/ https://www.ncbi.nlm.nih.gov/pubmed/37894221 http://dx.doi.org/10.3390/microorganisms11102563 |
work_keys_str_mv | AT mirandakevinjace pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 AT jabersaif pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 AT atoumdana pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 AT arjunansubha pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 AT ebelrainer pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 AT jasparsmarcel pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 AT edradaebelruangelie pseudomonassinanewbioactiveribosomallysynthesisedandposttranslationallymodifiedpeptidefrompseudomonasspsst3 |