Cargando…

Bacterial Viability in Self-Healing Concrete: A Case Study of Non-Ureolytic Bacillus Species

Cracking is an inevitable feature of concrete, typically leading to corrosion of the embedded steel reinforcement and massive deterioration because of the freezing–thawing cycles. Different means have been proposed to increase the serviceability performance of cracked concrete structures. This case...

Descripción completa

Detalles Bibliográficos
Autores principales: Ivaškė, Augusta, Gribniak, Viktor, Jakubovskis, Ronaldas, Urbonavičius, Jaunius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609539/
https://www.ncbi.nlm.nih.gov/pubmed/37894059
http://dx.doi.org/10.3390/microorganisms11102402
Descripción
Sumario:Cracking is an inevitable feature of concrete, typically leading to corrosion of the embedded steel reinforcement and massive deterioration because of the freezing–thawing cycles. Different means have been proposed to increase the serviceability performance of cracked concrete structures. This case study deals with bacteria encapsulated in cementitious materials to “heal” cracks. Such a biological self-healing system requires preserving the bacteria’s viability in the cement matrix. Many embedded bacterial spores are damaged during concrete curing, drastically reducing efficiency. This study investigates the viability of commonly used non-ureolytic bacterial spores when immobilized in calcium alginate microcapsules within self-healing cementitious composites. Three Bacillus species were used in this study, i.e., B. pseudofirmus, B. cohnii, and B. halodurans. B. pseudofirmus demonstrated the best mineralization activity; a sufficient number of bacterial spores remained viable after the encapsulation. B. pseudofirmus and B. halodurans spores retained the highest viability after incorporating the microcapsules into the cement paste, while B. halodurans spores retained the highest viability in the mortar. Cracks with a width of about 0.13 mm were filled with bacterial calcium carbonate within 14 to 28 days, depending on the type of bacteria. Larger cracks were not healed entirely. B. pseudofirmus had the highest efficiency, with a healing coefficient of 0.497 after 56 days. This study also revealed the essential role of the cement hydration temperature on bacterial viability. Thus, further studies should optimize the content of bacteria and nutrients in the microcapsule structure.