Cargando…

Distinct and Dynamic Changes in the Temporal Profiles of Neurotransmitters in Drosophila melanogaster Brain following Volatilized Cocaine or Methamphetamine Administrations

Due to similarities in genetics, cellular response, and behavior, Drosophila is used as a model organism in addiction research. A well-described behavioral response examined in flies is the induced increase in locomotor activity after a single dose of volatilized cocaine (vCOC) and volatilized metha...

Descripción completa

Detalles Bibliográficos
Autores principales: Filošević Vujnović, Ana, Saftić Martinović, Lara, Medija, Marta, Andretić Waldowski, Rozi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609923/
https://www.ncbi.nlm.nih.gov/pubmed/37895961
http://dx.doi.org/10.3390/ph16101489
Descripción
Sumario:Due to similarities in genetics, cellular response, and behavior, Drosophila is used as a model organism in addiction research. A well-described behavioral response examined in flies is the induced increase in locomotor activity after a single dose of volatilized cocaine (vCOC) and volatilized methamphetamine (vMETH), the sensitivity, and the escalation of the locomotor response after the repeated dose, the locomotor sensitization. However, knowledge about how vCOC and vMETH affect different neurotransmitter systems over time is scarce. We used LC-MS/MS to systematically examine changes in the concentration of neurotransmitters, metabolites and non-metabolized COC and METH in the whole head homogenates of male flies one to seven hours after single and double vCOC or vMETH administrations. vMETH leads to complex changes in the levels of examined substances over time, while vCOC strongly and briefly increases concentrations of dopamine, tyramine and octopamine followed by a delayed degradation into N-acetyl dopamine and N-acetyl tyramine. The first exposure to psychostimulants leads to significant and dynamic changes in the concentrations relative to the second administration when they are more stable over several hours. Further investigations are needed to understand neurochemical and molecular changes post-psychostimulant administration.