Cargando…

Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles

Palbociclib (PBC) is an FDA-approved CDK4/6 inhibitor used for breast cancer treatment. PBC has been demonstrated its ability to suppress the proliferation of glioma cells by inducing cell cycle arrest. However, the efflux transporters on the blood-brain barrier (BBB) restricts the delivery of PBC t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lo, Yu-Chen, Lin, Wen-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610156/
https://www.ncbi.nlm.nih.gov/pubmed/37896189
http://dx.doi.org/10.3390/pharmaceutics15102429
_version_ 1785128186158252032
author Lo, Yu-Chen
Lin, Wen-Jen
author_facet Lo, Yu-Chen
Lin, Wen-Jen
author_sort Lo, Yu-Chen
collection PubMed
description Palbociclib (PBC) is an FDA-approved CDK4/6 inhibitor used for breast cancer treatment. PBC has been demonstrated its ability to suppress the proliferation of glioma cells by inducing cell cycle arrest. However, the efflux transporters on the blood-brain barrier (BBB) restricts the delivery of PBC to the brain. The nano-delivery strategy with BBB-penetrating and glioma-targeting abilities was designed. Poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) was functionalized with the potential peptide, T7 targeting peptide and/or R9 penetrating peptide, to prepare PBC-loaded nanoparticles (PBC@NPs). The size of PBC@NPs was in the range of 168.4 ± 4.3–185.8 ± 4.4 nm (PDI < 0.2), and the zeta potential ranged from −17.8 ± 1.4 mV to −14.3 ± 1.0 mV dependent of conjugated peptide. The transport of PBC@NPs across the bEnd.3 cell model was in the order of dual-peptide modified NPs > T7-peptide modified NPs > peptide-free NPs > free PBC, indicating facilitated delivery of PBC by NPs, particularly the T7/R9 dual-peptide modified NPs. Moreover, PBC@NPs significantly enhanced U87-MG glioma cell apoptosis by 2.3–6.5 folds relative to PBC, where the dual-peptide modified NPs was the most effective one. In conclusion, the PBC loaded dual-peptide functionalized NPs improved cellular uptake in bEnd.3 cells followed by targeting to U87-MG glioma cells, leading to effective cytotoxicity and promoting cell death.
format Online
Article
Text
id pubmed-10610156
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106101562023-10-28 Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles Lo, Yu-Chen Lin, Wen-Jen Pharmaceutics Article Palbociclib (PBC) is an FDA-approved CDK4/6 inhibitor used for breast cancer treatment. PBC has been demonstrated its ability to suppress the proliferation of glioma cells by inducing cell cycle arrest. However, the efflux transporters on the blood-brain barrier (BBB) restricts the delivery of PBC to the brain. The nano-delivery strategy with BBB-penetrating and glioma-targeting abilities was designed. Poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) was functionalized with the potential peptide, T7 targeting peptide and/or R9 penetrating peptide, to prepare PBC-loaded nanoparticles (PBC@NPs). The size of PBC@NPs was in the range of 168.4 ± 4.3–185.8 ± 4.4 nm (PDI < 0.2), and the zeta potential ranged from −17.8 ± 1.4 mV to −14.3 ± 1.0 mV dependent of conjugated peptide. The transport of PBC@NPs across the bEnd.3 cell model was in the order of dual-peptide modified NPs > T7-peptide modified NPs > peptide-free NPs > free PBC, indicating facilitated delivery of PBC by NPs, particularly the T7/R9 dual-peptide modified NPs. Moreover, PBC@NPs significantly enhanced U87-MG glioma cell apoptosis by 2.3–6.5 folds relative to PBC, where the dual-peptide modified NPs was the most effective one. In conclusion, the PBC loaded dual-peptide functionalized NPs improved cellular uptake in bEnd.3 cells followed by targeting to U87-MG glioma cells, leading to effective cytotoxicity and promoting cell death. MDPI 2023-10-06 /pmc/articles/PMC10610156/ /pubmed/37896189 http://dx.doi.org/10.3390/pharmaceutics15102429 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lo, Yu-Chen
Lin, Wen-Jen
Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles
title Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles
title_full Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles
title_fullStr Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles
title_full_unstemmed Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles
title_short Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles
title_sort improve bbb penetration and cytotoxicity of palbociclib in u87-mg glioblastoma cells delivered by dual peptide functionalized nanoparticles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610156/
https://www.ncbi.nlm.nih.gov/pubmed/37896189
http://dx.doi.org/10.3390/pharmaceutics15102429
work_keys_str_mv AT loyuchen improvebbbpenetrationandcytotoxicityofpalbociclibinu87mgglioblastomacellsdeliveredbydualpeptidefunctionalizednanoparticles
AT linwenjen improvebbbpenetrationandcytotoxicityofpalbociclibinu87mgglioblastomacellsdeliveredbydualpeptidefunctionalizednanoparticles