Cargando…

Glycerol Monolaurate Inhibits Wild-Type African Swine Fever Virus Infection in Porcine Macrophages

Naturally abundant antimicrobial lipids, such as fatty acids and monoglycerides, that disrupt membrane-enveloped viruses are promising mitigants to inhibit African swine fever virus (ASFV). Among mitigant candidates in this class, glycerol monolaurate (GML) has demonstrated particularly high antivir...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackman, Joshua A., Arabyan, Erik, Zakaryan, Hovakim, Elrod, Charles C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610281/
https://www.ncbi.nlm.nih.gov/pubmed/37887709
http://dx.doi.org/10.3390/pathogens12101193
Descripción
Sumario:Naturally abundant antimicrobial lipids, such as fatty acids and monoglycerides, that disrupt membrane-enveloped viruses are promising mitigants to inhibit African swine fever virus (ASFV). Among mitigant candidates in this class, glycerol monolaurate (GML) has demonstrated particularly high antiviral activity against laboratory-adapted ASFV strains. However, there is an outstanding need to further determine the effects of GML on wild-type ASFV strains, which can have different virulence levels and sensitivities to membrane-disrupting compounds as compared to laboratory-adapted strains. Herein, we investigated the antiviral effects of GML on a highly virulent strain of a wild-type ASFV isolate (Armenia/07) in an in vitro porcine macrophage model. GML treatment caused a concentration-dependent reduction in viral infectivity, and there was a sharp transition between inactive and active GML concentrations. Low GML concentrations had negligible effect on viral infectivity, whereas sufficiently high GML concentrations caused a >99% decrease in viral infectivity. The concentration onset of antiviral activity matched the critical micelle concentration (CMC) value of GML, reinforcing that GML micelles play a critical role in enabling anti-ASFV activity. These findings validate that GML can potently inhibit wild-type ASFV infection of porcine macrophages and support a biophysical explanation to guide antimicrobial lipid performance optimization for pathogen mitigation applications.