Cargando…
Synthesis of Polymers with Narrow Molecular Mass Distribution through Interface-Initiated Room-Temperature Polymerization in Emulsion Gels
Homopolymers of n-butyl acrylate, methyl methacrylate, styrene, and their random copolymers were prepared via interface-initiated polymerization of emulsion gels at 20 °C. The polymerization was conducted in a free radical polymerization manner without inert gas protection. Compared with the polymer...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610333/ https://www.ncbi.nlm.nih.gov/pubmed/37896325 http://dx.doi.org/10.3390/polym15204081 |
Sumario: | Homopolymers of n-butyl acrylate, methyl methacrylate, styrene, and their random copolymers were prepared via interface-initiated polymerization of emulsion gels at 20 °C. The polymerization was conducted in a free radical polymerization manner without inert gas protection. Compared with the polymers synthesized at 60 °C, the polymerization of emulsion gels at 20 °C produced homo- and copolymers with a higher molecular mass and a narrower molecular mass distribution. The polydispersity indices for the polymers synthesized at 20 °C were found to be between 1.12 and 1.37. The glass transition temperatures for the as-synthesized butyl acrylate copolymers agree well with the prediction from the Gordon–Taylor equation. Interface-initiated room-temperature polymerization is a robust, energy-saving polymerization technique for synthesizing polymers with a narrow molecular mass distribution. |
---|