Cargando…

In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine

Biphasic in vitro dissolution testing is an attractive approach to reflect on the interplay between drug dissolution and absorption for predicting the bioperformance of drug products. The purpose of this study was to investigate the in vivo relevance of a biphasic dissolution test for the immediate...

Descripción completa

Detalles Bibliográficos
Autores principales: Incecayir, Tuba, Demir, Muhammed Enes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610453/
https://www.ncbi.nlm.nih.gov/pubmed/37896234
http://dx.doi.org/10.3390/pharmaceutics15102474
_version_ 1785128258781577216
author Incecayir, Tuba
Demir, Muhammed Enes
author_facet Incecayir, Tuba
Demir, Muhammed Enes
author_sort Incecayir, Tuba
collection PubMed
description Biphasic in vitro dissolution testing is an attractive approach to reflect on the interplay between drug dissolution and absorption for predicting the bioperformance of drug products. The purpose of this study was to investigate the in vivo relevance of a biphasic dissolution test for the immediate release (IR) formulations of a Biopharmaceutics Classification System (BCS) Class II drug, lamotrigine (LTG). The biphasic dissolution test was performed using USP apparatus II with the dual paddle modification. A level A in vitro-in vivo correlation (IVIVC) was constructed between the in vitro partition into the octanol and absorption data of the reference product. A good relation between in vitro data and absorption was obtained (r(2) = 0.881). The one-compartment open model was introduced to predict the human plasma profiles of the test product. The generic product was found to be bioequivalent to the original product in terms of 80–125% bioequivalence (BE) criteria (85.9–107% for the area under the plasma concentration curve (AUC) and 82.7–97.6% for the peak plasma concentration (C(max)) with a 90% confidence interval (CI)). Overall, it was revealed that the biphasic dissolution test offers a promising ability to estimate the in vivo performance of IR formulations of LTG, providing considerable time and cost savings in the development of generic drug products.
format Online
Article
Text
id pubmed-10610453
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106104532023-10-28 In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine Incecayir, Tuba Demir, Muhammed Enes Pharmaceutics Article Biphasic in vitro dissolution testing is an attractive approach to reflect on the interplay between drug dissolution and absorption for predicting the bioperformance of drug products. The purpose of this study was to investigate the in vivo relevance of a biphasic dissolution test for the immediate release (IR) formulations of a Biopharmaceutics Classification System (BCS) Class II drug, lamotrigine (LTG). The biphasic dissolution test was performed using USP apparatus II with the dual paddle modification. A level A in vitro-in vivo correlation (IVIVC) was constructed between the in vitro partition into the octanol and absorption data of the reference product. A good relation between in vitro data and absorption was obtained (r(2) = 0.881). The one-compartment open model was introduced to predict the human plasma profiles of the test product. The generic product was found to be bioequivalent to the original product in terms of 80–125% bioequivalence (BE) criteria (85.9–107% for the area under the plasma concentration curve (AUC) and 82.7–97.6% for the peak plasma concentration (C(max)) with a 90% confidence interval (CI)). Overall, it was revealed that the biphasic dissolution test offers a promising ability to estimate the in vivo performance of IR formulations of LTG, providing considerable time and cost savings in the development of generic drug products. MDPI 2023-10-17 /pmc/articles/PMC10610453/ /pubmed/37896234 http://dx.doi.org/10.3390/pharmaceutics15102474 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Incecayir, Tuba
Demir, Muhammed Enes
In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine
title In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine
title_full In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine
title_fullStr In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine
title_full_unstemmed In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine
title_short In Vivo Relevance of a Biphasic In Vitro Dissolution Test for the Immediate Release Tablet Formulations of Lamotrigine
title_sort in vivo relevance of a biphasic in vitro dissolution test for the immediate release tablet formulations of lamotrigine
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610453/
https://www.ncbi.nlm.nih.gov/pubmed/37896234
http://dx.doi.org/10.3390/pharmaceutics15102474
work_keys_str_mv AT incecayirtuba invivorelevanceofabiphasicinvitrodissolutiontestfortheimmediatereleasetabletformulationsoflamotrigine
AT demirmuhammedenes invivorelevanceofabiphasicinvitrodissolutiontestfortheimmediatereleasetabletformulationsoflamotrigine