Cargando…
Exploring the ITO/PET Extended-Gate Field-Effect Transistor (EGFET) for pH Sensing
In this project we investigated the extended-gate field-effect transistor (EGFET) structure used with ITO (Indium Tin Oxide)/PET (Polyethylene Terephthalate) sensitive films acting as the extended-gate part of an EGFET obtained from a combination of FETs from the CD4007 chip. We tested the device as...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610559/ https://www.ncbi.nlm.nih.gov/pubmed/37896443 http://dx.doi.org/10.3390/s23208350 |
Sumario: | In this project we investigated the extended-gate field-effect transistor (EGFET) structure used with ITO (Indium Tin Oxide)/PET (Polyethylene Terephthalate) sensitive films acting as the extended-gate part of an EGFET obtained from a combination of FETs from the CD4007 chip. We tested the device as a pH sensor by immersing the ITO/PET electrode in several chemical solutions of acidic and basic nature, including hydrogen peroxide, acetic acid, sulfuric acid, and ammonium hydroxide, at different concentrations. Using a Tektronix 4200A sourcemeter, we plotted the current–voltage (I–V) characteristics for the different chemical solutions, and we established a correlation to the pH changes. Results from the plotted I–V characteristics show a great dependance of the drain current (I(D)) on solution concentration. Furthermore, we measured the pH of each of the used solutions, and we established a relationship between the drain current and the pH value. Our results show a consistent decrease in the current with an increase in the pH value, although with different rates depending on the solution. The device showed high voltage sensitivity at 0.23 V per pH unit when tested in sulfuric acid. |
---|