Cargando…
BERT-Based Approaches to Identifying Malicious URLs
Malicious uniform resource locators (URLs) are prevalent in cyberattacks, particularly in phishing attempts aimed at stealing sensitive information or distributing malware. Therefore, it is of paramount importance to accurately detect malicious URLs. Prior research has explored the use of deep-learn...
Autores principales: | Su, Ming-Yang, Su, Kuan-Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610561/ https://www.ncbi.nlm.nih.gov/pubmed/37896591 http://dx.doi.org/10.3390/s23208499 |
Ejemplares similares
-
Malicious URL Detection Based on Associative Classification
por: Kumi, Sandra, et al.
Publicado: (2021) -
Classification of Malicious URLs Using Machine Learning
por: Abad, Shayan, et al.
Publicado: (2023) -
An intelligent identification and classification system for malicious uniform resource locators (URLs)
por: Abu Al-Haija, Qasem, et al.
Publicado: (2023) -
Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning
por: Ghaleb, Fuad A., et al.
Publicado: (2022) -
An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models
por: Aljabri, Malak, et al.
Publicado: (2022)