Cargando…
Comparing Three Methods of Selecting Training Samples in Supervised Classification of Multispectral Remote Sensing Images
Selecting training samples is crucial in remote sensing image classification. In this paper, we selected three images—Sentinel-2, GF-1, and Landsat 8—and employed three methods for selecting training samples: grouping selection, entropy-based selection, and direct selection. We then used the selecte...
Autores principales: | Zhang, Hongying, He, Jinxin, Chen, Shengbo, Zhan, Ye, Bai, Yanyan, Qin, Yujia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610573/ https://www.ncbi.nlm.nih.gov/pubmed/37896624 http://dx.doi.org/10.3390/s23208530 |
Ejemplares similares
-
Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
por: Giannopoulos, Michalis, et al.
Publicado: (2020) -
Multispectral Optical Remote Sensing for Water-Leak Detection
por: Krapez, Jean-Claude, et al.
Publicado: (2022) -
Supervised spatial classification of multispectral LiDAR data in urban areas
por: Huo, Lian-Zhi, et al.
Publicado: (2018) -
A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery
por: Jiang, Dong, et al.
Publicado: (2012) -
Multispectral Sensor Calibration and Characterization for sUAS Remote Sensing
por: Mamaghani, Baabak, et al.
Publicado: (2019)