Cargando…
2S-BUSGAN: A Novel Generative Adversarial Network for Realistic Breast Ultrasound Image with Corresponding Tumor Contour Based on Small Datasets
Deep learning (DL) models in breast ultrasound (BUS) image analysis face challenges with data imbalance and limited atypical tumor samples. Generative Adversarial Networks (GAN) address these challenges by providing efficient data augmentation for small datasets. However, current GAN approaches fail...
Autores principales: | Luo, Jie, Zhang, Heqing, Zhuang, Yan, Han, Lin, Chen, Ke, Hua, Zhan, Li, Cheng, Lin, Jiangli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610581/ https://www.ncbi.nlm.nih.gov/pubmed/37896706 http://dx.doi.org/10.3390/s23208614 |
Ejemplares similares
-
Dynamic Recognition and Analysis of Gait Contour of Dance Movements Based on Generative Adversarial Networks
por: Ren, Junlin, et al.
Publicado: (2022) -
Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
por: Kazuhiro, Koshino, et al.
Publicado: (2018) -
LHC analysis-specific datasets with Generative Adversarial Networks
por: Hashemi, Bobak, et al.
Publicado: (2019) -
Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
por: Marouf, Mohamed, et al.
Publicado: (2020) -
An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks
por: Shin, Keewon, et al.
Publicado: (2023)