Cargando…

Characterization of Cellulose-Degrading Bacteria Isolated from Silkworm Excrement and Optimization of Its Cellulase Production

An abundance of refractory cellulose is the key limiting factor restricting the resource utilization efficiency of silkworm (Bombyx mori) excrement via composting. Screening for cellulose-degrading bacteria is likely to provide high-quality strains for the safe and rapid decomposition of silkworm ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hao, Zhang, Minqi, Zhang, Yuanhao, Xu, Xueming, Zhao, Ying, Jiang, Xueping, Zhang, Ran, Gui, Zhongzheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610594/
https://www.ncbi.nlm.nih.gov/pubmed/37896386
http://dx.doi.org/10.3390/polym15204142
Descripción
Sumario:An abundance of refractory cellulose is the key limiting factor restricting the resource utilization efficiency of silkworm (Bombyx mori) excrement via composting. Screening for cellulose-degrading bacteria is likely to provide high-quality strains for the safe and rapid decomposition of silkworm excrement. In this study, bacteria capable of degrading cellulose with a high efficiency were isolated from silkworm excrement and the conditions for cellulase production were optimized. The strains were preliminarily screened via sodium carboxymethyl cellulose culture and staining with Congo red, rescreened via a filter paper enzyme activity test, and identified via morphological observation, physiological and biochemical tests, and phylogenetic analysis of the 16S rDNA sequence. Enzyme activity assay was performed using the 3,5-dinitrosalicylic acid method. DC-11, a highly cellulolytic strain, was identified as Bacillus subtilis. The optimum temperature and pH of this strain were 55 °C and 6, respectively, and the filter paper enzyme activity (FPase), endoglucanase activity (CMCase), and exoglucanase activity (CXase) reached 15.40 U/mL, 11.91 U/mL, and 20.61 U/mL. In addition, the cellulose degradation rate of the treatment group treated with DC-11 was 39.57% in the bioaugmentation test, which was significantly higher than that of the control group without DC-11 (10.01%). Strain DC-11 was shown to be an acid-resistant and heat-resistant cellulose-degrading strain, with high cellulase activity. This strain can exert a bioaugmentation effect on cellulose degradation and has the potential for use in preparing microbial inocula that can be applied for the safe and rapid composting of silkworm excrement.