Cargando…
Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm
Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused...
Autores principales: | Feng, Jingpeng, Zhan, Lihua, Ma, Bolin, Zhou, Hao, Xiong, Bang, Guo, Jinzhan, Xia, Yunni, Hui, Shengmeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610595/ https://www.ncbi.nlm.nih.gov/pubmed/37896329 http://dx.doi.org/10.3390/polym15204085 |
Ejemplares similares
-
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022) -
Optimization of Vibration Pretreatment Microwave Curing in Composite Laminate Molding Process
por: Zhang, Dechao, et al.
Publicado: (2023) -
Gene Expression Value Prediction Based on XGBoost Algorithm
por: Li, Wei, et al.
Publicado: (2019) -
Construction of a Diagnostic Algorithm for Diagnosis of Adult Asthma Using Machine Learning with Random Forest and XGBoost
por: Tomita, Katsuyuki, et al.
Publicado: (2023) -
To Bond or
Not to Bond: Metal–Metal Interaction
in Heterobimetallic Rare-Earth Metal–Silver Complexes
por: Haidinger, Alexandra, et al.
Publicado: (2023)