Cargando…
Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023
Although influenza vaccines are safe and efficacious, vaccination rates have remained low globally. Today, with the advent of new media, many individuals turn to social media for personal health questions and information. However, misinformation may be rife, and health communications may be suboptim...
Autores principales: | Ng, Qin Xiang, Ng, Clara Xinyi, Ong, Clarence, Lee, Dawn Yi Xin, Liew, Tau Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610639/ https://www.ncbi.nlm.nih.gov/pubmed/37896922 http://dx.doi.org/10.3390/vaccines11101518 |
Ejemplares similares
-
Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Public Messaging on ‘Loneliness’ over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Utility of Social Media in COVID-19 Vaccination: Unsupervised Learning of 672,133 Twitter Posts
por: Liew, Tau Ming, et al.
Publicado: (2021) -
Public perception on 'healthy ageing' in the past decade: An unsupervised machine learning of 63,809 Twitter posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period
por: Ng, Qin Xiang, et al.
Publicado: (2022)