Cargando…
Real-Time Recognition Method for Key Signals of Rock Fracture Acoustic Emissions Based on Deep Learning
The characteristics of acoustic emission signals generated in the process of rock deformation and fission contain rich information on internal rock damage. The use of acoustic emissions monitoring technology can analyze and identify the precursor information of rock failure. At present, in the field...
Autores principales: | Sun, Lin, Lin, Lisen, Yao, Xulong, Zhang, Yanbo, Tao, Zhigang, Ling, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610656/ https://www.ncbi.nlm.nih.gov/pubmed/37896608 http://dx.doi.org/10.3390/s23208513 |
Ejemplares similares
-
Stress–strain and acoustic emission characteristics of cement-based materials used to simulate soft rock with fractures
por: Liu, Han-dong, et al.
Publicado: (2022) -
Analysis of Acoustic Emission Characteristics and Failure Mode of Deep Surrounding Rock of Sanshandao Gold Mine
por: Li, Guang, et al.
Publicado: (2022) -
A Semi-Empirical Damage Model of Helankou Rocks Based on Acoustic Emission
por: Yang, Youzhen, et al.
Publicado: (2023) -
Criticality Hidden in Acoustic Emissions and in Changing Electrical Resistance during Fracture of Rocks and Cement-Based Materials
por: Niccolini, Gianni, et al.
Publicado: (2020) -
Rock Crack Recognition Technology Based on Deep Learning
por: Li, Jinbei, et al.
Publicado: (2023)