Cargando…
Entropy-Based Machine Learning Model for Fast Diagnosis and Monitoring of Parkinson’s Disease
This study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson’s disease (PD) using rest-state EEG signals (rs-EEG) from 20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based on the comparative analy...
Autores principales: | Belyaev, Maksim, Murugappan, Murugappan, Velichko, Andrei, Korzun, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610702/ https://www.ncbi.nlm.nih.gov/pubmed/37896703 http://dx.doi.org/10.3390/s23208609 |
Ejemplares similares
-
Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application
por: Velichko, Andrei, et al.
Publicado: (2022) -
Bifurcation and Entropy Analysis of a Chaotic Spike Oscillator Circuit Based on the S-Switch
por: Boriskov, Petr, et al.
Publicado: (2022) -
A Bio-Inspired Chaos Sensor Model Based on the Perceptron Neural Network: Machine Learning Concept and Application for Computational Neuro-Science
por: Velichko, Andrei, et al.
Publicado: (2023) -
Facial geometric feature extraction based emotional expression classification using machine learning algorithms
por: M., Murugappan, et al.
Publicado: (2021) -
Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography
por: Murugappan, Murugappan, et al.
Publicado: (2020)