Cargando…
End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function
An end-to-end approach to autonomous navigation that is based on deep reinforcement learning (DRL) with a survival penalty function is proposed in this paper. Two actor–critic (AC) frameworks, namely, deep deterministic policy gradient (DDPG) and twin-delayed DDPG (TD3), are employed to enable a non...
Autores principales: | Jeng, Shyr-Long, Chiang, Chienhsun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610759/ https://www.ncbi.nlm.nih.gov/pubmed/37896743 http://dx.doi.org/10.3390/s23208651 |
Ejemplares similares
-
End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation
por: Ruan, Xiaogang, et al.
Publicado: (2021) -
An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments
por: Ramezani Dooraki, Amir, et al.
Publicado: (2018) -
Deep reinforcement learning-aided autonomous navigation with landmark generators
por: Wang, Xuanzhi, et al.
Publicado: (2023) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
por: Zhao, Jiang, et al.
Publicado: (2022) -
Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning
por: Zhang, Xinyu, et al.
Publicado: (2019)