Cargando…

Tribological Characterisation and Modelling for the Fused Deposition Modelling of Polymeric Structures under Lubrication Conditions

In recent years, additive manufacturing technology, particularly in plastic component fabrication, has gained prominence. However, fundamental modelling of the influence of materials like ABS, PC, and PLA on tribological properties in fused deposition modeling (FDM) remains scarce, particularly in n...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Feiyang, Xu, Chenyan, Khan, Muhammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610781/
https://www.ncbi.nlm.nih.gov/pubmed/37896355
http://dx.doi.org/10.3390/polym15204112
Descripción
Sumario:In recent years, additive manufacturing technology, particularly in plastic component fabrication, has gained prominence. However, fundamental modelling of the influence of materials like ABS, PC, and PLA on tribological properties in fused deposition modeling (FDM) remains scarce, particularly in non-lubricated, oil-lubricated, and grease-lubricated modes. This experimental study systematically investigates the effects of material type, lubrication method, layer thickness, and infill density on FDM component tribology. A tribology analysis is conducted using a TRB3 tribometer. The results indicate a coefficient of friction (CoF) range between 0.04 and 0.2, generally increasing and decreasing with layer thickness and filler density. The lubrication impact hinges on the material surface texture. The study models the intricate relationships between these variables via full-factor analysis, showing a strong alignment between the modelled and measured friction coefficients (an average error of 3.83%). Validation tests on different materials affirm the model’s reliability and applicability.